

Localisation in Ad Hoc Networks
using Infrared Channels

Mechatronics Final Year Project: Final Report

Leo Felix Priestnall
Supervised by Dr. Y. Ahmet ekercioƐlu

Department of Electrical & Computer Systems Engineering
Monash University, Australia

Tuesday, September 9, 2014

 i

Summary

The following is a project report for a final year thesis project entitled Localisation in Ad Hoc
Networks using Infrared Channels.

Infrared is emerging as a leading candidate for providing secure gigabit indoor
communications such as high speed internet to portable devices, and localisation would
form an important part of such systems, increasing throughput through directional routing
and preventing interference between devices.

The aims of this project were to implement an iterative localisation algorithm for infrared ad
hoc networks, test its performance on a real world testbed of infrared wireless nodes and
make recommendations as to improvements. The algorithm presented uses a novel
approach to weighing position estimates in order to mitigate the effects of error
propagation.

Key outcomes include the successful fabrication of a small testbed of nodes, and the
implementation of the localisation algorithm in code. The localisation code was found to
calculate bearings with reasonable accuracy. Position estimation was shown through
simulation to work on successful packet reception, however due to packet collisions there
were problems in achieving it on the testbed.

This report provides a background on localisation in wireless ad hoc networks, details
regarding the fabrication and operation of the infrared testbed, an examination of the
localisation algorithm and a walkthrough of the code produced. Results of tests and
recommendations as to future work are also provided.

 ii

Acknowledgements

I gratefully acknowledge the support and guidance of my supervisor Dr. Y. Ahmet
 ŜƪŜǊŎƛƻƐƭǳ, who was always enthusiastic and ready to provide me with assistance. His
support even extended to providing me a laboratory to work from over the summer, for
which I am very grateful.

I would also like to give special thanks to postgraduate student Joseph Violi, designer of the
Sens-r infrared node and architect of the localisation algorithm featured in this project. His
assistance was invaluable and his patience with my constant questions much appreciated.

I would further like to thank the ECSE electronics workshop staff for their assistance and
advice regarding construction of the Sens-r testbed and various other electronics problems I
came across. I wish also to thank my lab colleagues and fellow students, particularly Terry
Truong for his advice on soldering & PCBs and David McKechnie for his useful summary on
using the Atmel AVR port of µC/OS-II and for lending me his more compact RS232 to TTL
circuit.

Lastly, I would like to thank my family and friends for their continued support.

 iii

Glossary

AHDWL Anchor Hop Distance Weighted Localisation

CRC Cyclic Redundancy Check

DA Destination Address

EWMA Exponential Weighted Moving Average

GCC GNU C Compiler

GNU Db¦Ωǎ bƻǘ ¦bL· όh{ύ

GPS Global Positioning System

IC Integrated Circuit

IDE Integrated Development Environment

IR Infrared

IRQ Interrupt Request

ISP In System Programmer

ISR Interrupt Service Routine

JTAG Joint Test Action Group

LED Light Emitting Diode

LSB Least Significant Bit

MAC Media Access Control

MANET Mobile Ad Hoc Network

MSB Most Significant Bit

MUTEX Mutual Exclusion Semaphore

NAV Network Allocation Vector

OS Operating System

PC Personal Computer

PCB Printed Circuit Board

PWM Pulse Width Modulation

RAM Random Access Memory

RF Radio Frequency

RSS Received Signal Strength

RSSI Received Signal Strength Indicator

RTOS Real Time Operating System

Rx Receiver

SA Source Address

SLIP Serial Line Internet Protocol

SRAM Static RAM

TTL Transistor-Transistor Logic, Time to Live

Tx Transmitter

UART Universal Asynchronous Receiver/Transmitter

USART Universal Serial Asynchronous Receiver/Transmitter

USB Universal Serial Bus

WSN Wireless Sensor Network

 iv

Table of Contents

Summary ... i

Acknowledgements .. ii

Glossary .. iii

Table of Contents .. iv

1. Introduction ... 1

1.1 Background & Motivation .. 1

1.2 Objectives ... 1

1.3 Report Overview .. 2

2. Background .. 3

2.1 Wireless Ad Hoc Networks ... 3

2.2 Infrared Communications .. 3

2.3 Localisation in Wireless Ad Hoc Networks ... 4

3. Sens-r Testbed .. 7

3.1 Overview .. 7

3.2 Fabrication ... 10

3.3 Issues & Recommendations ... 11

4. Sens-r Based Localisation .. 12

4.1 Bearing Calculation .. 12

4.2 Position Estimation .. 15

4.3 Anchor Hop Distance Weighted Localisation .. 19

4.4 AHDWL Implementation .. 20

5. Code Implementation ... 22

5.1 Overview .. 22

5.2 Communications Board .. 22

5.2.1 USART & SLIP Protocol .. 22

5.2.2 Control of Transmission Power ... 24

5.2.3 Control of Transmitter & Receiver Arrays .. 24

5.2.4 Commands from Mainboard .. 25

5.2.5 IR Packet Encoding & Transmission .. 26

5.2.6 IR Packet Reception & Decoding... 28

5.3 Mainboard .. 29

5.3.1 PC Communications .. 29

5.3.2 Control of IR Communications .. 30

5.3.3 Idle & Hello Sequence Tasks ... 31

5.3.4 Communications Task ... 33

5.3.5 Neighbour Table Update Packet ... 34

 v

5.3.6 Neighbour & Bearing Table Management .. 35

5.4 Localisation .. 37

5.4.1 Bearing Calculation ... 37

5.4.2 Position Estimation ... 37

5.4.3 AHDWL .. 38

5.5 Brief Walkthrough .. 38

6. Testing & Evaluation ... 40

6.1 Bearing Testing... 40

6.2 Position Calculation ... 42

6.3 System Evaluation .. 45

7. Conclusions & Recommendations ... 46

7.1 Conclusion .. 46

7.2 Recommendations for Future Work .. 46

References ... 48

Appendix A: Test Results .. 51

A.1 Bearing Test Results ... 51

Appendix B: Mathematical Work .. 59

B.1 Equation 4.16 Proof ... 59

Appendix C: Testbed Supplement ... 60

C.1 Sens-r Components List ... 60

C.2 Sens-r Circuit Diagrams .. 61

C.3 Additional Components List ... 64

Appendix D: Project Code ... 65

D.1 Configuration & Settings ... 65

D.1.1 Fuse Settings ... 65

D.1.2 Library Settings ... 66

D.2 Sens-r Communications Board .. 67

D.2.1 atmega168.c ... 67

D.3 Sens-r Mainboard .. 80

D.3.1 os_cfg.h... 80

D.3.2 includes.h .. 83

D.3.3 atmega128.c ... 84

 1

1. Introduction

1.1 Background & Motivation

Whilst in the past relegated to low data rate applications, infrared and visible light systems
are now being looked at as a way of providing high speed wireless indoor communications.
In such a system the apparent shortcomings of infrared; being short range and requiring line
of sight would provide protection from eavesdropping and interference whilst the high
directionality of IR transmitters could be utilised to increase throughput. Infrared is also a
viable means of communication in aquatic environments, as clean water provides relatively
low attenuation of infrared light.

Indoor mobile ad hoc networks (MANETs), like teams of cleaning robots or wireless sensor
networks (WSNs) such as surveillance camera systems, could also employ infrared
communications. In many such networks localisation is required to allow nodes to
determine their positions (either relative to each other or absolutely). High level
applications often require at least relative localisation information in order to perform tasks.
The focus of this project is the implementation of a localisation scheme which reduces the
error accumulation that occurs in other iterative localisation methods.

1.2 Objectives

The main aim of this project was to implement and test the performance of the localisation
algorithm for infrared ad hoc networks outlined in the paper Incorporating Multiple
Estimates for Accurate Localization in Infrared Ad Hoc Networks [1]. The algorithm takes an
anchor hop count based approach to weighting position estimates in order to reduce the
effects of error propagation found in iterative localisation schemes. Localisation code was
written and tested on a testbed made up of non mobile Sens-r infrared nodes [2] which
were built as part of the project. Based on these tests, an assessment of the algorithm and
recommendations were made.

The localisation scheme outlined in this report is unique in two ways, firstly in the way
position estimates are calculated without the need for signal strength indicators and
secondly in the way position estimates are combined to reduce error caused by error
propagation over multiple hops.

This project aims to further contribute to research in the areas of localisation and optical ad
hoc networks. It builds upon the work done in the paper Incorporating Multiple Estimates
for Accurate Localization in Infrared Ad Hoc Networks by moving from a simulated to a real
world test platform, and provides an evaluation of the scheme with recommendations as to
improvements.

 2

1.3 Report Overview

The report first gives a background in section 2 on wireless ad hoc networks, infrared
communications and localisation techniques. Details regarding the fabrication and operation
of the Sens-r infrared testbed are given in section 3 (with schematics and component lists
provided in Appendix C). The localisation scheme including bearing estimation, position
estimation and the weighting algorithm is covered in section 4, whilst the actual code
produced for the testbed is examined in detail in section 5 (and provided in Appendix D).
Results of testing and an evaluation of system performance are provided in section 6,
followed by conclusions and recommendations in section 7. Any questions or clarifications
about this report are welcomed by the author.

 3

2. Background

2.1 Wireless Ad Hoc Networks

A wireless ad hoc network is a system of autonomous nodes which form a decentralised
communications network. Wireless communication allows for a dynamic network topology
where new nodes can be rapidly introduced and likewise rapidly removed. Nodes act as
both host and router, performing tasks and forwarding messages to each other. For
example, mobile nodes can form dynamic networks where they are linked with their nearest
neighbours; nodes which move too far from their neighbours might lose connection but
then come into contact with other nodes and begin talking, changing the network topology.

There is a need then for ad hoc networks to be able to adapt quickly to change. This requires
efficient routing protocols so nodes can communicate new information over multi-hop
paths consisting of possibly several links. The use of wireless communication also requires
nodes to cope with noise and interference as well as sharing limited bandwidth.

There are two major types of wireless ad hoc networks; smart wireless sensor networks
(WSNs) and mobile ad hoc networks (MANETs), both of which have great potential to
perform tasks cooperatively in unpredictable environments. A wireless ad hoc sensor
network consists of several (typically stationary) sensor nodes spread across a geographical
area which can be used to take measurements, detect events of interest, and even classify
and track objects. In a military sensor network it could be possible to detect an enemy tank,
classify it, measure its speed and track it across the network. MANETs are ad hoc networks
with mobile nodes. There are several diverse applications for MANETs, one being to
establish efficient, robust lines of communication in disaster or military situations. The
ability to configure and deploy nodes quickly make ad hoc networks suitable for such
scenarios.

Robotic swarms are another area in which wireless ad hoc networking can be applied. In all
of these applications ad hoc networks are required to be self organising, robust and energy
efficient as well as of low cost and minimal complexity.

2.2 Infrared Communications

Infrared (IR) communications have traditionally been used in indoor, short range, low data
rate applications such as in communications between computer peripherals and remote
control of home devices. Messages are transmitted by encoding a modulated signal and
emitting it via an IR LED. The LED focuses this into a narrow IR beam providing high
directionality. Line of sight between the transmitter and receiver is required for messages to
be received.

 4

Whilst this line of sight requirement might first be seen as a disadvantage, it can be used to
prevent eavesdropping as well as outside interference, providing increased security and
reliability. It also allows for independent networks to be placed in adjacent areas without
interference (provided no line of sight between them). A similar set up using RF wireless
networks would require different operational frequencies and would still be susceptible to
eavesdropping from the outside. IR also has the advantage of being low cost by employing
relatively cheap components.

Whilst previously limited to low data rate applications, infrared and visible spectrum
communication systems are now being researched as a means to provide high speed indoor
communications, such as high speed internet to portable devices. In addition to preventing
eavesdropping, the high directionality provided by IR reduces interference between nodes
and can increase network capacity by allowing multiple packets to be transmitted
simultaneously. Energy consumption would also be reduced by directing transmission
power only at the desired recipients.

Several optical wireless ad hoc networks have been developed at research institutions
around the world (for example Pushpin nodes [3] and Moorebots [4]) especially in the area
of indoor ad hoc networks. An application of such networks could be a team of indoor
vacuums that can communicate to effectively coordinate the cleaning of large areas. Optical
wireless ad hoc networks could also be used in aquatic environments as clean water
provides a relatively low attenuation medium for near visible and visible light. In fact, Festo
have developed an underwater robot called the AquaJelly [5], which swims like a jellyfish
and communicates via infrared channels.

Figure 2.1: The Festo AquaJelly communicates underwater via an arrangement of 11 IR LEDs.

2.3 Localisation in Wireless Ad Hoc Networks

Many applications in ad hoc networks require localisation to determine node positions
(either relative to each other or absolutely). Many higher layer applications require at least
relative localisation information to perform tasks such as geographical routing, location
based addressing and sensor mapping. In the case of MANETs localisation information is
particularly critical as nodes must be able to determine their locations and that of their
neighbours to effectively interact with each other and coordinate tasks.

 5

Figure 2.2: A wide range of higher layer applications depend on localisation information.

An obvious way to achieve localisation would be to use existing infrastructure such as GPS,
but in a network of multiple nodes such a solution would increase node complexity and
costs as well as reducing lifespan. Also such a system would be limited to the infrastructure
that supports it, for example GPS is often only accurate for outdoors with clear weather. A
more autonomous approach is for nodes to determine their positions from their immediate
neighbours, forming a distributed localisation network which has the added advantage of
energy efficiency.

There are two families of localisation techniques for wireless ad hoc networks. Namely,
range based techniques in which nodes measure distances or angles to other reference
nodes to determine their position and range free techniques where nodes are not required
to do so, relying on connectivity information to determine node positions. Infrared
communications are suitable for range based localisation as angles can be readily calculated
due to the high directionality of IR transceivers.

The procedure for range based localisation can be broken into three stages. Firstly nodes
must determine their distances and bearings to other reference nodes. Then using this
information, by geometric principles (triangulation for example), a position estimate can be
calculated. A localisation algorithm is used to determine how position estimates are shared
and combined to produce accurate localisation across the network.

Often in an ad hoc network a small number of nodes will know their absolute position
exactly, being either pre-programmed and stationary or having access to outside localisation
means such as GPS. These nodes are commonly referred to as anchor nodes, acting as fixed
known points in the network. In many ad hoc localisation schemes, nodes adjacent to the
anchor nodes can determine their positions, and following this their neighbours can do
likewise. In this way localisation information can propagate through the network over time
(iterative localisation). The goal of such schemes is to allow nodes with unknown locations
to make accurate, stable and quickly converging position estimates. A problem with iterative
schemes is the potential accumulation of errors at each hop away from the anchor nodes,
which can render position estimates unreliable in large networks.

The localisation method implemented in this project is unique in two ways. First, explicit

 6

RSSI information is not required to determine distances between nodes; nodes only need to
take bearing measurements. This is done via the circular transmitter and receiver arrays on
the Sens-r infrared nodes which form the testbed for the project. Second, an anchor hop
distance weighting localisation (AHDWL) algorithm is applied to mitigate the effects of error
propagation that occur the further a node is from an anchor node.

 7

3. Sens-r Testbed

This section provides details regarding the construction and operation of the testbed used in
this project. Component lists and Sens-r circuit diagrams are provided in Appendix C.

3.1 Overview

The Sens-r node was designed as a low cost node to do angle based infrared localisation.
Each node consists of two circuit boards; the communications board which allows nodes to
communicate via infrared links and the mainboard which is designed to perform higher level
application tasks (in this case localisation).

Figure 3.1 Non mobile Sens-r node top view.

Both boards are driven by Atmel 8-bit AVR microcontrollers which provide a range of useful
on-chip functions such as timer-counters, pulse width modulation (PWM) outputs, analog to
digital conversion (ADC), serial (USART) communications and pin interrupts. There is a well
maintained open source development toolkit [6] based on the GNU C Complier and a very
active online support community [7] for AVR devices. The number of processors in the AVR
family means that projects can be readily upgraded to use more capable chips without
significant changes to the project code.

The communications board consists of a circular arrangement of sixteen directional IR LEDs
and eight BRM-1030 infrared receivers [8], controlled by an ATmega168 microcontroller.
The board works in the physical and data link layers, providing infrared links between nodes
and passing packets via USART to the mainboard which performs higher level functions.
Commands are likewise received from the mainboard via USART.

 8

Figure 3.2: Components of the communications subsystem.

The infrared transmitter LEDs are arranged in a circular layout and wired up in a 4 × 4
matrix, which is fed a 38 kHz supply signal (PWM_IR) in order to modulate transmissions
(the BRM-1030 receivers require a 38 kHz carrier frequency to decode signals). The LEDs are
wired such that the horizontal rails form quadrants (A, B, C & D), and the vertical rails
ground paths for the LEDs in those quadrants (W, X, Y & Z). The horizontal rails & LED
voltage supply are controlled by PNP transistors (requiring inverted logic signals) and the
vertical rails by NPN transistors connected to ground.

a) Component layout.

b) Switching logic.

Figure 3.3: Communications ǎǳōǎȅǎǘŜƳΩǎ IR transmitter configuration.

In order to ensure transmitter power remains consistent it is a requirement that only one
ground transmitter can be set at a time. This allows for up to four independent messages to
be transmitted simultaneously, spaced 90° apart, at the same transmission power, and also
ensures that adjacent transmitters do not interfere with each other. The localisation scheme
in this project requires adjustable control of transmission power; this is done by using a
variable voltage regulator where output voltage is controlled by a PWM signal (PWM_V)
from the ATmega168. Increasing the duty cycle of this signal increases the voltage output
(incidentally the transistors will not switch for an output voltage of much greater than 5V,
which corresponded to a duty cycle of around 80% in the testbed setup). This voltage is run
through a series resistor & LED combination, and as only one ground transistor can be set,
the result is a linear relationship between current and supply voltage. Given a constant
voltage drop across the LED this means transmission power is directly proportional to duty
cycle of the signal PWM_V.

 9

Messages can be received simultaneously on each of the eight infrared receivers. As
mentioned earlier, the BRM-1030 receiver modules only detect signals modulated at around
38 kHz. This helps to eliminate interference from other infrared sources such as the sun,
although some outside sources might also be modulated (fluorescent lighting for example).
¢ƘŜ ǊŜŎŜƛǾŜǊ ƳƻŘǳƭŜΩǎ ƛŘƭŜ ǎǘŀǘŜ ƛǎ ƭƻƎƛŎ Ƙƛ όр± ƛƴ ǘƘƛǎ ŎŀǎŜύΣ ƳŜŀƴƛƴƎ ǊŜŎŜƛǾŜŘ ƳŜǎǎŀƎŜǎ ǿƛƭƭ
be inverted (which needs to be accounted for when decoding).

The mainboard is powered by an ATmega128 microcontroller which consists of more
features and significantly more memory than the ATmega168. In this project the mainboard
is used to maintain tables regarding immediate neighbours, do localisation calculations,
send commands to the communications board as well as act on packets received and output
data to a PC. The board employs ǘƘŜ aƛŎǊǳƳ ˃/κh{-II RTOS [9] to manage processor usage
across multiple tasks (whereas the communications board is run by interrupt driven C code).

In terms of chip IO, two serial UARTs are used for communications, four general IO pins are
used as inputs from a DIL switch and a further eight used as outputs to some LEDs for
debugging purposes. Also, whilst not utilised in this project the mainboard provides an ADC,
an eight pin GPIO port, control circuitry for an external motor and IO for optical wheel
encoders. This is a scalable board which allows for Sens-r nodes to be used in research
requiring mobile nodes, and even allows for swapping infrared with other communications
systems such as wireless [10].

Figure 3.4: Components of the main processing subsystem utilised in this project.

Serial communications are done relatively simply between the mainboard and
communications board as both ATmega chips provide onboard USART functions based on
transistor-transistor logic. To communicate with a PC however, requires RS232 compliant
logic levels which transistor-transistor logic does not provide. So a RS232 to TTL circuit (see
figure 3.5) was made as part of the testbed. Messages from the mainboard could then be
received at the PC by using a serial port terminal (HyperTerminal was used in this project).

Figure 3.5: RS232 to TTL converter circuit used for sending messages to PC.

 10

The AVR Studio 4 IDE [11] was used to simulate the chips and to program two boards via
JTAG port using an AVR ISP MkII (sourced from Soanar). The programmer comes with a 6 pin
plug, and so required making up a 6 pin ISP to 10 pin JTAG crossover cable like that in figure
3.6 below.

Figure 3.6: 10 pin JTAG to 6 pin ISP cable used for programming.

3.2 Fabrication

One of the key outcomes of this project was a testbed of five non mobile Sens-r nodes to
provide a real world test platform for the localisation scheme. The Sens-r circuit boards are
two layer milled PCBs, the mainboard rectangular (80×60mm) and the communications
board circular (ͺулƳƳύ. A two dimensional PCB milling machine was used to mill away
copper foil from the top and bottom layers, leaving the desired copper tracks separate from
the rest of the board. Vias and through holes were drilled to allow connections to be made
between the top and bottom layers.

The mainboard consists of a large number of surface mount components including resistors,
capacitors, LEDs and the ATmega128. Pin connectors, the reset switch and the motor drive
IC were through hole soldered.

Figure 3.7: Sens-r mainboard.

All components on the communications board (with the exception of the voltage regulator)
were through hole components. The sheer number of components and via holes made
soldering the communications boards quite a challenge (see figure 3.8b).

 11

a) Top view.

b) Bottom view.

Figure 3.8: Sens-r communications board.

The following changes were made from the Sens-r original schematics (which are given in
Appendix C.2). On the mainboard L293D ICs were used instead of L293 ICs, making the
diodes specified for motor control in the original circuit diagrams redundant. Also all unused
IO such as the ADC and GPIO ports were not given pin connectors. On the communications
board an additional decoupling capacitor was soldered across the ATmega168Ωǎ vcc and
ground input pins. Also, the original PCB layout had a track which was not able to be milled,
which was fixed by soldering a new path using low gauge wire.

3.3 Issues & Recommendations

Construction was made difficult by the use of milled copper PCBs, as a significant amount of
effort was required to ensure that the milled tracks would not short circuit with the board at
soldered junctures. The amount of through holes and vias required, particularly for the
communications board, made this a significant problem. Another difficulty was the
oxidation of the copper over time due to handling, this made soldering more difficult (later
found to be improved by sanding with emery paper). The performance of the Sens-r nodes
was adequate, although sometimes unreliable due to the quality of the circuit boards.

Debugging and testing of code on the nodes was quite a slow process, as WinAVR does not
come with supǇƻǊǘ ŦƻǊ ˃/κh{-II. Code would first have to be compiled to satisfy AVR and C
code requirements, then uploaded to the Sens-r mainboard and then during program
execution error messages specifically added to the code would be output via USART to the
PC terminal. This process would then be repeated until successful execution was achieved,
making debugging a tortuous process. There were also many occasions when code would
stop working and produce inexplicable results due to a lack of program memory, although
later in the course of the project significant savings in data memory were achieved to
prevent this.

In order to create a large network, it would be wise to alter the node design to a single
communications board with a USB port. Higher level tasks could be done via PC by
simulating the role of the mainboard, without worrying about lack of memory (which was a
major concern in writing code for this project). Multiple nodes could be controlled by a USB
hub and data from each recorded, providing a complete account of the state of nodes in the
network over time. Most importantly the time taken to perform debugging would be
significantly reduced.

 12

4. Sens-r Based Localisation

The localisation algorithm in the paper Incorporating Multiple Estimates for Accurate
Localization in Infrared Ad Hoc Networks [1] forms the basis of the scheme presented in this
section, with some modifications. In this scheme nodes form a distributed ad hoc network,
sharing localisation information (position and bearing data) with their immediate Ψм ƘƻǇΩ
neighbours. Relative bearing estimation forms the basis of this range based localisation
scheme.

The scheme requires a small number of nodes in the network to know their positions
absolutely (at least two anchor nodes are required to allow initial position estimates to be
made). Once initial estimates have been made other nodes not adjacent to the anchors can
make position estimates, followed then by their neighbours. The iterative localisation
scheme presented here makes use of an anchor hop distance weighted localisation
(AHDWL) algorithm to weigh position estimates based on node hop count from anchors in
order to reduce the effects of error accumulation from the anchors.

Localisation can be broken down into three stages. First, nodes determine bearings to their
immediate neighbours. Then, once they have obtained bearing and position data from other
nodes they are able to calculate a position estimate via intersection of circles, new
information received is used to form new position estimates. Finally, position estimates are
combined using the AHDWL algorithm ƛƴ ƻǊŘŜǊ ǘƻ ŀŎŎǳǊŀǘŜƭȅ ŘŜǘŜǊƳƛƴŜ ŀ ƴƻŘŜΩǎ ŎǳǊǊŜƴǘ
position

The localisation scheme implemented in this project is unique in two ways. First, explicit
RSSI information is not required to determine angles or distances between nodes. Bearing
measurements are taken from sequences of messages sent over a range of power levels, via
the circular transmitter/receiver arrays on the Sens-r nodes which form the testbed for the
project. Second, anchor hop distance is used as a measure to weight and combine position
estimates in order to reduce error propagation across the network.

4.1 Bearing Calculation

The BRM-1030 receiver module is a low cost IR receiver, used in typical low data rate
applications such as remote controls. It is an integrated package which buffers the received
signal through amplifier, band pass filter (centred at 38 kHz), integrator and comparator
stages to obtain a digital signal. It is not possible to measure the properties of the original
signal with such a device, particularly received signal strength (RSS), having passed the signal
through this multistage system.

The characteristics of the BRM-1030 however allow for channel connectivity to be used as
an indirect measure of RSS. Previous testing [12] found that for a series of transmitted
pulses the device will either receive almost all pulses or none at all, a brick wall where the

 13

device is either connected or not. There was also shown to be a clear relationship between
transmission power, transmitter and receiver angles. Connection quality reduces for greater
angle between the transmitter and receiver, thus requiring greater transmission power for a
packet to be detected (or a reduced distance between them). This finding combined with
the arrangement of the communications board can be used to do ŀ ǎƻǊǘ ƻŦ Ψindirect
measurementΩ of RSS, utilising transmission power to calculate bearings.

The method is similar to IƻȅǘΣ aŎYŜƴƴƻŎƘ ŀƴŘ .ǳǎƘƴŜƭƭΩǎ approach [13], where the centroid
of the received signals is calculated by taking their power levels into account. However, their
approach involves taking explicit RSS measurements at the receivers of a signal transmitted
at constant power. In this method, rather than take RSS measurements of a constant power
signal, a sequence of ΨƘŜƭƭƻΩ packets at increasing transmission power is sent in all directions
and cƻƴƴŜŎǘƛǾƛǘȅ ƻŦ ǘƘŜ ǊŜŎŜƛǾŜǊǎ ǳǎŜŘ ǘƻ ŘŜǘŜǊƳƛƴŜ ǘƘŜ ƴŜƛƎƘōƻǳǊΩǎ ōŜŀǊƛƴƎ όǊŜƭŀǘƛǾŜ ǘƻ ŀƴ
arbitrary 0° bearing) as follows:

()

()ä

ä

=

=

-

-

=
N

n

n

N

n

nn

ij

PP

PP

1

max

1

max j

f

(4.1)

where, ijf= bearing of node j relative to node i

 N = total number of receivers which received a message from node j
 Pmax = maximum power level at which a messages in the hello sequence are

transmitted
 Pn = minimum transmission power at which a message was received on Rxn

 nj = local bearing of receiver relative to 0° bearing

The centroid of the received sequence is found by recording the lowest transmission power
of the received packets for each receiver (transmission power is encoded in the packet), and
giving greater weighting to those receivers that received packets at lowest power. The
distance between nodes is not critical as the circular arrangement of the transmitter and
receiver arrays means symmetric pairs will form, effectively cancelling each other out in the
above equation (4.1).

There are two ways in which bearings can be estimated using this technique. The first is
passive reception of the packet sequence, where the lowest transmission power packet
correctly decoded on each receiver is recorded and put into equation 4.1 above to obtain a
bearing estimate. The second method is active reception, where nodes that receive hello
packets send hello reply packets back to the transmitting nodes (where the estimate is
made) indicating what packets have been received and from which transmitter diode. This
would provide for more accurate estimates given that the Sens-r node has double the
number of transmitters as receivers, but the transmission of reply messages from several
nodes would require quite sophisticated media access control (MAC) in order to prevent
collisions. On the other hand, passive reception at the receiver does not require replies to
be sent, reducing the likelihood of collisions and can determine its bearing by simply
listening for hello packets.

In this project passive bearing estimation was used. Note that while MAC is not required to
prevent collisions between hello reply messages, it is still needed to prevent collisions

 14

between hello packet sequences. It was found during testing that sequences transmitting
simultaneously can corrupt the hello packets such that they are not decoded correctly,
which can cause bearing estimations to become very inaccurate.

To reduce variation in bearing estimates a simple moving average filter can also be applied
to local bearing calculations going back a number of estimates. Doing so, whilst reducing
variation, would also reduce the responsiveness of the localisation scheme to moving nodes.
The effects of implementing both moving average and median filters to bearing calculations
are investigated in section 6.1.

It was discovered that there was a problem using the bearing calculation method outlined
so far for hello packets received about the 0° bearing. Consider the following example;
packets are received at the local 0°, 45° & 315° bearing receivers (note all angles in
localisation are taken clockwise) with minimum transmission powers (duty cycle) of 8, 40 &
32 respectively. Given a maximum transmission power of 80 the bearing is found as follows:

() ()

() ()

80 8 0 (80 40) 45 80 32 315

80 8 (80 40) 80 32
ijf

- ³ + - ³ + - ³
=

- + - + -

(4.2)
16920

105.75
160

ijf= =

(4.3)

Clearly there is a problem, as the actual result should be around 0°. In this case a valid
solution is obtained by using -45° instead of 315° in equation 4.2, the two symmetric
bearings will then average to around 0° rather than 180° resulting in a bearing of -2.25° or
357.75°. However, if one tries to use a bearing range of (-180°, 180°] a similar problem will
occur about 180°.

The following method was devised to obtain an accurate solution across the full bearing
range. After a full hello packet sequence has been received, the receiver which successfully
received a packet at the lowest (non zero) transmission power has its local bearing recorded
and is assigned temporarily as the 0° bearing. The other receivers are then designated
clockwise from the 0° receiver as 45°, 90°, 135°, 180°, -135°, -90° and -45°. Using these
ŘŜǎƛƎƴŀǘŜŘ ōŜŀǊƛƴƎǎ ŀ ΨŘŜƭǘŀΩ ōŜŀǊƛƴƎ ŜǎǘƛƳŀǘŜ Ŏŀƴ ōŜ ƳŀŘŜΣ ǿƘƛŎƘ ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ ōŜŀǊƛƴƎ
from the closest receiver (equation 4.4). Adding this delta bearing to the recorded local
bearing yields the actual bearing estimate (equation 4.6).

Consider the following example where a transmitter node is at a bearing of 130° to the
receiver. Maximum transmission power is again at 80% duty.

Rx ID Tx Power (D%) Local Bearing Assigned Bearing (űn*)

0 - 0° -135°

1 - 45° -90°

2 26 90° -45°

3 21 135° 0°

4 38 180° 45°

5 - 225° 90°

6 - 270° 135°

 15

7 - 315° 180°

Table 4.1: Sample bearing calculation data.

The 135° local receiver is designated temporarily as the 0° bearing (and recorded as ű0°). The
other receivers are assigned bearings in sequence (űn*). From this table the delta and final
bearings are calculated as follows:

()()
()

max

max

*j
f

- ³
D =

-

ä
ä

n n

ij

n

P P

P P

(4.4)
540

5.625
96

f
-

\D = =-ij

(4.5)

0
f f j=D +ij ij

(4.6)

5.625 135 129.375f\ =- + =ij

(4.7)

This results in an angle estimation error of around 0.6° in this case.

4.2 Position Estimation

Trilateration is a method for calculating the intersection of three circles, given their centres
and radii. For localisation purposes this means a node can determine its position if it knows
the positions of three other nodes and their relative distances. The Sens-r node however in
addition to obtaining position information can calculate the bearings of its neighbour nodes
(see section 4.1), and given that information then determine the discrimination angles
between nodes. This allows position estimates to be made with only two reference nodes of
known position.

Figure 4.1: Triangle with two neighbour nodes A & B used by node C for localisation.

Nodes measure their relative bearings to each other with respect to a local 0° bearing.
These bearings are denoted by ūij, the bearing of node j to node i. By sharing this bearing

 16

information nodes can calculate the discrimination angles of a neighbour triangle (figure
4.1) using the following equations:

(360)mod360ACB CB CAq f f= - +

(4.8)

(360)mod360CBA BA BCq f f= - +

(4.9)

(360)mod360BAC AC ABq f f= - +

(4.10)

The positions of reference nodes A & B are also shared, from which the distance between
the reference nodes ||A ï B|| can be calculated. Using this and the calculated discrimination
angles, node C can calculate its distance to the reference nodes A & B using the sine rule.

sin

sin

CBA

ACB

A B
C A

q

q

-
- =

(4.11)

sin

sin

BAC

ACB

A B
C B

q

q

-
- =

(4.12)

The problem is then reduced to an intersection of two circles. Here a point P is introduced
along the line AB which is perpendicular to node C.

Figure 4.2: P is a point on AB orthogonal to C.

 17

By Pythagoras theorem:

2 2 2
C A P A P C- = - + -

(4.13)
2 2 2

C B P B P C- = - + -

(4.14)

Also:

P A A B P B- = - - -

(4.15)

From equations 4.13, 4.14 & 4.15 it is found (see Appendix B.1) that:

2 2 2

2

C B C A A B
P B

A B

- - - + -
- =

-

(4.16)

Using this result and equation 4.14:

2 2
P C C B P B- = - - -

(4.17)

As points A, B and P lie on the same line point P can be calculated using the ratios of PB and
AB as follows:

()B A

P B

P B x x
x x

A B

- -
= -

-
,

()B A

P B

P B y y
y y

A B

- -
= -

-

(4.18) & (4.19)

This then allows the coordinates of node C to be calculated, by using the equation of a point
perpendicular to AB for a distance of ||P ï C|| away from point P. Note that as there are
only two reference nodes it is an undetermined system with two symmetric solutions (as
shown in figure 4.2).

()
1

A B

C P

P C y y
x x

A B

- -
= +

-
,

()
1

A B

C P

P C x x
y y

A B

- -
= -

-

(4.20) & (4.21)

()
2

A B

C P

P C y y
x x

A B

- -
= -

-
,

()
2

A B

C P

P C x x
y y

A B

- -
= +

-

(4.22) & (4.23)

To eliminate tƘŜ ƎŜƻƳŜǘǊƛŎŀƭƭȅ ƛƴŎƻǊǊŜŎǘ ΨǇƘŀƴǘƻƳΩ ǎƻƭǳǘƛƻƴΣ ŀ ǎƭƛƎƘǘƭȅ ŘƛŦŦŜǊŜƴǘ ŀǇǇǊƻŀŎƘ
was taken to that taken in the paper Incorporating Multiple Estimates for Accurate
Localization in Infrared Ad Hoc Networks [1]. This disambiguation method is outlined below.

 18

if (| | xA - xB| | >= | | yA - yB| |)
 if (xA < xB)
 if (ǷACB < 180)
 choose solution with smallest y
 else
 choose solution with larg est y
 else
 ÉÆ ƽǷACB < 180)
 choose solution with largest y
 else
 choose solution with smallest y
else
 if (yA < yB)
 ÉÆ ƽǷACB < 180)
 choose solution with largest x
 else
 choose solution with smallest x
 else
 ÉÆ ƽǷACB < 180)
 choose solution with smallest x
 else
 choose solution with largest x

A correct position estimate is made based on the size of the angle between the two
reference nodes about the node C. The phantom elimination algorithm is run in the x or y
axis, whichever provides greatest distance between the two reference nodes. This helps to
increase reliability in the event of measurement errors, reducing the risk of an incorrect
solution being selected. This method also works for cases where ||yA ï yB|| = ||xA ï xB||, as
verified by testing (see section 6.2).

a) ||xA ï xB|| Ó ||yA ï yB||

b) ||xA ï xB|| < ||yA ï yB||

Figure 4.3: Illustration of the phantom elimination method.

!ƴ ŀŘŘƛǘƛƻƴŀƭ Ǉƻƛƴǘ ǘƻ ƴƻǘŜ ŀōƻǳǘ Ǉƻǎƛǘƛƻƴ ŜǎǘƛƳŀǘƛƻƴ ƛǎ ǘƘŜ ǊŜǉǳƛǊŜƳŜƴǘ ǘƘŀǘ ƻƴƭȅ ΨǿŜƭƭ
ŎƻƴŘƛǘƛƻƴŜŘΩ ǘǊƛŀƴƎƭŜǎ as described by Chandra [14] should be used to make estimates. In
equations 4.11 & 4.12 the sine rule is applied ǘƻ ŘŜǘŜǊƳƛƴŜ ƴƻŘŜ /Ωǎ ŘƛǎǘŀƴŎŜ ǘƻ ǘƘŜ
reference nodes, to get a rational solution we require sin ɗACB to be non zero. These
equations and the resulting distances are very sensitive to errors in the measurement of
ɗACB, especially when sin ɗACB is close to zero (at 0° and 180°).

Sensitivity to errors in angle measurement can be measured by taking the partial derivatives
of equations 4.11 & 4.12 with respect to measured angle as shown below.

cos

sin

CBA

CBA ACB

C A A B q

q q

µ - -
=

µ

(4.24)

 19

2

sin cos

sin

BAC ACB

ACB ACB

C B A B q q

q q

µ - - -
=

µ

(4.25)

Ψ²Ŝƭƭ ŎƻƴŘƛǘƛƻƴŜŘΩ ǘǊƛŀƴƎƭŜǎ have discrimination angles that are less sensitive to errors. Error
sensitivity could be used as a method to indicate the quality of position estimates made.
However in this implementation, only a simple check is made before making a position
estimate to ensure that angles are not too close to 0° or 180°.

4.3 Anchor Hop Distance Weighted Localisation

In a relatively dense ad hoc network nodes will have multiple neighbours from which they
can make position estimates. All of these estimates must be combined into a single estimate
which a node takes as its current estimated position and communicates to its neighbours. In
iterative localisation schemes, as time goes on, more nodes become able to estimate their
positions, these nodes then become references from which their neighbours can make
position estimates. Over time, localisation information propagates from anchor nodes
across the network and accuracy improves as more reference nodes become available to do
position estimation.

The AHDWL algorithm utilised in this project is based on an iterative exponential weighted
moving average (EWMA) algorithm. A EWMA applies weighting coefficients to data points
which decrease exponentially; in localisation terms this means that the weighting for each
older position estimate decreases exponentially giving greater importance to recent
estimates whilst not totally discarding the older estimates. A general EWMA equation is
given by:

1t t tS S Ya b-= +

(4.26)
1a b= -

(4.27)
where, St = current EWMA value

 St-1 = previous EWMA value
 Yt = latest estimate made

Note Ŭ & ɓ are weighting coefficients that must sum to one, the larger ɓ is the quicker the
system can respond to change but at higher sensitivity to errors in estimates. For
localisation, equation 4.26 can be ǳǎŜŘ ǘƻ Ŏƻƴǘƛƴǳŀƭƭȅ ǳǇŘŀǘŜ ŀ ƴƻŘŜΩǎ Ǉƻǎƛǘƛƻƴ ŜŀŎƘ ǘƛƳŜ ŀ
new position estimate is made. In that case St is its averaged new position, St-1 is its previous
averaged position and Yt is the latest instantaneous position estimate made.

Iterative localisation schemes suffer from accumulation of errors at each hop away from the
anchor nodes, as they rely only on immediate neighbours to do position estimation. Any
position estimation errors will be passed onto neighbours and propagate across the
network. This can render position estimates unreliable, particularly in large networks.

 20

Figure 4.4: Position estimate errors can accumulate in iterative localisation schemes.

The AHDWL algorithm uses the anchor hop counts of reference nodes (how many hops each
reference node is from an anchor node) to selectively weigh individual position estimates in
the EWMA equation. It assumes that the further away nodes are from an anchor node, the
more likely they are to have larger errors in their position estimates due to error
accumulation. Likewise, the closer a node is to an anchor node the smaller the error is likely
to be. Thus estimates made with anchor nodes, or nodes close to the anchor nodes are
considered better quality estimates and given higher weightings.

Additional weighting coefficients are added to the EWMA equation so that new position
estimates will be weighted based on anchor hop count. There are many ways to go about
this; in the following scheme weighting is inversely proportional to hop count.

1

2A B

W
d d
=

+ +

(4.28)

baseWb b=

(4.29)
where, W = weighting coefficient

 dA & dB = anchor hop count of nodes A & B
 ɓbase = 2 × maximum value of ɓ
 ɓ = weighting coefficient in EWMA (equation 4.27)

For simplicity ɓ is given here as the average hop count of the two reference nodes. ɓbase
represents the maximum weighting of a position estimate (in this implementation ɓbase is set
at 0.7, so the maximum weighting is 0.35).

4.4 AHDWL Implementation

Whilst specific details as to the implementation of the algorithm are covered in section 5, a
ƎŜƴŜǊŀƭ ƻǾŜǊǾƛŜǿ ƻŦ ŀ ƴƻŘŜΩǎ ƻperation to achieve localisation is provided here. In order to
be able to calculate position estimates a node must have both position and bearing
information regarding its neighbours. As mentioned previously, hello sequence packets are
used in order to determine local bearings of neighbours. In order to obtain a neighbour
ƴƻŘŜΩǎ Ǉƻǎƛǘƛƻƴ ŀƴŘ ōŜŀǊƛƴƎ ƛƴŦƻǊƳŀǘƛƻƴ ŀ ƴŜƛƎƘōƻǳǊ ǘŀōƭŜ ǳǇŘŀǘŜ ǇŀŎƪŜǘ ƛǎ ǳǎŜŘΦ 9ŀŎƘ ƴƻŘŜ
Ƴŀƛƴǘŀƛƴǎ ŀ ƴŜƛƎƘōƻǳǊ ǘŀōƭŜ ƻŦ ƛǘǎ ƻǿƴ ŀƴŘ ƛǘǎ ƴŜƛƎƘōƻǳǊΩǎ ǇƻǎƛǘƛƻƴΣ ƘƻǇ Ŏƻǳƴǘ ŀƴŘ ōŜŀǊƛƴƎ
information which is then used to calculate position estimates when new data is added.

 21

Figure 4.5: Simplified state diagram of the AHDWL algorithm.

The operation of each node as specified in the AHDWL algorithm is as follows. Nodes are
initialised and enter an idle state. After a period of no activity, the node will send a
sequence of hello packets and return to being idle. If a hello sequence is received a bearing
for the transmitting node is calculated and then added to the neighbour table. If a
neighbour table update packet is received the information it contains is added to the
neighbour table. If there is sufficient information in the table on reception of either of these
packet type a position estimate will be calculated for all triangles affected by the new data
and a neighbour table update packet will be sent. In this way node position estimates
should quickly converge.

 22

5. Code Implementation

The following section provides an overview of how the localisation scheme was
implemented in code on the Sens-r testbed, the code itself is provided in Appendix D. Whilst
ǘƘŜǊŜ ƛǎƴΩǘ time to provided a detailed explanation of every line of code here, key functions
are highlighted and explained in order to provide the reader with a detailed understanding
of how each system block works and how these blocks interact to form the final system and
do localisation. Note that all code snippets in this section are pseudocode representations
(using C operators) of the actual code.

5.1 Overview

The communications subsystem is required to do asynchronous detection and decoding of
packets, packet transmission with clock information embedded as well as USART
communications. This meant producing Atmel based C code, which was completely
interrupt driven, in order to control the transmitter and receiver arrays. For the main
processing subsystem a real time operating system was required to do multitasking and
share processor usage and resources between tasks. The RTOS employed in this project was
the Micrium ˃ /κh{-II real time kernel.

Lƴ ƻǊŘŜǊ ǘƻ Ǌǳƴ ˃/κh{-II on the mainboard both the source code and an AVR port were
required. Version 2.60 of the source code was obtained from the CD which came with the
book MicroC/OS-II: The Real-Time Kernel [9], the AVR port by Julius Luukko [15] was utilised
to customise the OS to run on the ATmega128 microcontroller. The WinAVR toolkit [6] was
employed to provide a GNU C compiler and C runtime library [16]. AVR Studio 4 [11] was
used both as a GUI for the compiler and for programming the boards via an AVR ISP MkII
USB programmer.

5.2 Communications Board

5.2.1 USART & SLIP Protocol

USART is used to relay packets received via infrared to the mainboard, as well as to receive
and act on commands sent by the mainboard. The USART hardware provided by the AVR
chips makes serial communications relatively easy to implement. There are two read buffers
and a shift register for receiving bytes as well as a write buffer and shift register for byte
transmission. Data is read from the receive buffer and written to the transmit buffer by
reading and writing to the USART data register UDR0. Functions are also provided for parity
check bit generation, different frame formats and there are recovery units for asynchronous
data reception. Transmit complete, receive complete and transmit buffer empty flags and
interrupts are provided as well as frame, data overrun and parity error flags.

 23

For all serial communications in the code a BAUD rate of 19200 bytes per second is used,
with a frame format of eight bits, single start (St) and stop (Sp) bits (for synchronisation) and
no parity.

Figure 5.1: Serial frame format.

The code for transmitting bytes is a simple polling routine where the data register empty
flag must be set before writing to the buffer.

// send byte on USART
whil e (!(usart data reg empty))

NOP

set uart data reg (UDR0) = byte to send

Serial receive and transmit buffers are provided in the code to allow for messages of
multiple bytes to be sent and received. These packets are framed according to serial line
internet protocol (SLIP) [17]. SLIP allows for variable length packets to be sent by use of an
END character (0xC0) to end packet formation at the receiver.

Typically an END character is also sent at the start of a packet to flush out the receiver
buffer. If there is a byte in the packet with the same value as the END character a two
character code is sent instead; an ESC character (0xD2) followed by an ESC_END character
(0xD3). This will be decoded to the correct value at the receiver but packet formation will
not terminate. Likewise in the case of a byte in the packet with the same value as the ESC
character, a two character code is sent; an ESC character followed by an ESC_ESC character
(0xD4).

END 5!¢!Χ END

Figure 5.2: Serial packet framing using SLIP protocol.

At the receiver decoding SLIP protocol involves the use of an ESC character flag (in the code
the most significant bit of the byte count variable is used) to indicate how the next character
is to be decoded. In the event of an ESC character followed by non-control character
protocol violation, the non-control character is added to the packet and the ESC character
ignored.

// ISR on USART reception of a byte
if (rxbyte == END)
 // packet complete
 if(buff er pointer != start of buffer)
 decode packet in buffer and perform command
 reset buffer pointer
else if (rxbyte == ESC)

set ESC flag
else if (rxbyte == ESC_END)
 if(ESC flag)

 24

 reset ESC flag
 add END char to buffer

else
 add ESC_END to buff er

else if (rxbyte == ESC_ESC)
 if(ESC flag)
 reset ESC flag
 add ESC char to buffer

else
 add ESC_ESC to buffer

else
 if(ESC flag)
 reset ESC flag

add rxbyte to buffer

The code for transmitting bytes according to SLIP protocol is similar to the above; the byte
to send is examined and then given control characters if necessary, and at the start and end
of the packet an ESC byte is sent.

5.2.2 Control of Transmission Power

As stated earlier, control of transmission power is achieved by changing the duty cycle of a
PWM signal (PWM_V) which controls the output power of a voltage regulator. This is
achieved on the ATmega168 device by using a timer-counter in fast PWM mode. In this
mode the counter counts up from 0 to a TOP value (in this case 262) specified by the ICR1
register and then resets to 0. An output is given when the count matches the value of an
output compare register (OCR1B in this case), by varying this register control of duty cycle is
achieved. Transmission power is directly proportional to the duty cycle.

Note that the duty cycle is restricted to a maximum of 80% as the transistors which control
the transmitter array cannot switch at significantly above 5V; the regulator was found to
deliver 6.2V at 100% duty.

5.2.3 Control of Transmitter & Receiver Arrays

The communications board has a transmitter array of sixteen IR LEDs wired up in a 4 × 4
matrix, which is supplied by a 38 kHz signal (PWM_IR). This signal is provided by using the
same timer-counter that is used for PWM of the voltage regulator, but using a different
output compare pin with a duty cycle of 50%. The main clock runs at 10 MHz and the timer-
counter counts from 0 to 262, which gives an output of 10 MHz/262 = 38.2 kHz.

Control of the transmitter matrix is achieved by use of a transmit mask to indicate which
quadrant and which ground transistor to set for transmission of each message. The transmit
mask is of the form 0bZYWXDCBA, where the DCBA bits represent the quadrants and the
ZYWX bits represent the ground transistors. In order to ensure consistent transmission
power only one ground transistor can be set at a time, this is accounted for in the Ψtransmit
byteΩ function where if more than one ground transistor bit is set in the mask, only one will
be set.

// set only 1 GND transistor
if (transmit mask bit 0x10)
 set W pin

 25

else if (transmit mask bit 0x20)
 set X pin
else if (transmit mask bit 0x40)
 set Y pin
else if (transmit mask bit 0x80)
 set Z pin

The transistors for the A, B, C & D horizontal rails which control the quadrants and the
PWM_IR transistor are PNP type. This inverts the logic required to control these rails,
ŀƭǘƘƻǳƎƘ ŦƻǊ ǘƘŜ t²aψLw ǎƛƎƴŀƭ ǘƘƛǎ ŘƻŜǎƴΩǘ ǊŜŀƭƭȅ ƳŀǘǘŜǊ ŀǎ ǘƘŜ ǎƛƎƴŀƭ ǿƛƭƭ ǎǘƛƭƭ ōŜ ŀǘ оу ƪIȊ
with 50% duty. So for code concerning setting the quadrant transistors (used for encoding
messages) this must be taken into account, often marked by Ψtbt ƭƻƎƛŎΩ ƛƴ ǘƘŜ ŎƻŘŜ
comments.

The receiver array of eight BRM-1030 receiver modules is set up such that whenever a
receiver changes state a pin change interrupt is generated (note nesting of interrupts does
not occur), allowing for asynchronous and simultaneous reception of packets (as the ISR will
check all receivers as to whether they have changed state). The BRM-1030 only detects
signals modulated at about 38 kHz and is idle logic hi, this means that received signals will
be inverted.

Details regarding infrared packet transmission, encoding, reception and decoding are
covered in sections 5.2.5 & 5.2.6.

5.2.4 Commands from Mainboard

The communications board essentially acts as a slave to the mainboard, executing
commands and relaying completed packets. The command packet format is as follows:

END COMMAND\QuadID 5!¢!Χ END

Figure 5.3: Serial command packet from mainboard.

The mainboard can give the following commands:
- SET_TO (0x30)
- SET_FROM (0x40)
- SET_TYPE (0x50)
- SET_DATA (0x60)
- SET_LEN (0x70)
- SET_TX_POW (0x20)
- SEND_ALL (0x10)

The command byte is split into its four most significant bits which determine which
command is to be executed and its remaining four bits which determine which quadrant
and transmit packet buffer it is concerned with. The SET_TO, SET_FROM, SET_TYPE,
SET_DATA and SET_LEN commands set the destination address, source address, IR packet
type, payload length and payload data fields of the four transmit quadrant buffers
respectively. The SET_FROM command also sets the global variable self_id which identifies
the node. Also note that the SET_DATA command sets the payload length automatically, as
it the payload length is measured when writing the data to the buffers. This makes the
SET_LEN command largely redundant except in the case of an empty data payload.

 26

The SET_TX_POW command sets the duty cycle of the signal which controls the output from
the voltage regulator, calling the transmission power function and setting the global variable
ir_tx_power which is appended to the IR packets. The SEND_ALL command tells the
communications board to set the transmit mask (which determines which transmitters and
quadrants are to send) and to then frame & send the packets in its buffers.

5.2.5 IR Packet Encoding & Transmission

Each quadrant has a transmit buffer for packets to be sent. On reception of a SEND_ALL
command from the mainboard messages will be sent on each buffer according to the
transmit mask specified. This sets one of the ground transistors and enables a timer
interrupt which is used by an interrupt routine to send the bits.

To provide synchronisation capability at the receiver, clock information needs to be included
in the framing of each byte. Originally, RC5 [18] was examined as a method for framing
bytes, where each byte consists of two start bits and Manchester encoding to embed clock
information. While perfectly feasible, a simpler encoding and decoding method using only
one start bit was found to be just as effective on the BRM-1030 receiver modules.

A timer-counter at 1/64th the main clock speed counts from 0 to 78, generates an interrupt,
and resets to 0. This interrupt occurs at every half bit period, this is around 500µs which
makes for a maximum pulse width about 1ms, which falls just outside the desired range of
the receivers of 400 to 800µs but is seen to work well. At the first interrupt the start bit
(logic 1, lo to hi in Manchester encoding) is sent which begins byte reception at the receiver.
Then the data bits are sent from LSB to MSB with Manchester encoding by use of a next bit
buffer, which determines which transmitters need to be toggled hi or lo for the next half
period (indicated by a toggle flag).

Figure 5.4: IR frame format.

At the end of the byte the timer interrupt is disabled and an inter-symbol delay of at least
1ms is waited before sending the next byte (by re-enabling the interrupt) in order to ensure
the receiver is idle for at least one bit period.

// ISR on timer - counter output compare match
reset counter

if ((bit count == 8) AND !(toggle flag))

ABCD output lo
disable timer interrupt on compare match
reset counter
set bit count to 0xFF // signals send by tes function that byte has been sent

else if (start flag) // start bit logic 1
clear start flag
set toggle flag
ABCD output lo // machester logic 1 is lo to hi

else if (toggle flag)
clear toggle flag
XOR ABCD output with transmit mask

else

 27

set toggle flag
for each txbyte buffer n: 0 to 3
 if (txbyte bit(bit count))
 set (next bit buffer bit (n))
AND transmit mask with next bit buffer
ABCD output lo for bits set in the above result
// as machester logic 1 lo to hi, logic 0 hi to lo
increment bit count

In each byte buffer there could be a packet of a different length, so the Ψsend ǇŀŎƪŜǘǎΩ
function will use the send mask to tell the ISR routine which packets still have bytes to be
sent by setting only those quadrants which remain to be sent.

// send pa ckets function
disable rx pin change interrupts

f ind max length of packets in transmit quadrant buffers

for all bytes waiting in buffer s i: 0 to max
 set send mask to ZYWX0000

 for quadrants ABCD j: 0 to 3
 if ((buffer message length > i) && (tran smit mask bit j))
 set send mask bit j
 else
 reset send mask bit j

 function send bytes(send mask, bytes to send)

delay(intersymbol delay)

enable rx pin change interrupts

Given the small overhead and relatively simple implementation of SLIP for serial
communications it is also used for framing of infrared packets. The IR frame format used is
shown in figure 5.5 below.

END END END DA SA TxID TxPOW TYPE LEN 5!¢!Χ CRC END

Figure 5.5: IR packet framing using SLIP protocol.

Note that three END characters are appended to the start of the frame to clear out the
receiver buffers rather than just one. This is because during testing it was found that the
BRM-1030 ǊŜŎŜƛǾŜǊ ǿƻǳƭŘ ƻŦǘŜƴ ƘŀǾŜ ŜǊǊƻǊǎ ƛƴ ǘƘŜ ŦƛǊǎǘ ǘǿƻ ōƛǘǎΣ ǘŀƪƛƴƎ ǘƛƳŜ ǘƻ ΨƎŜǘ ǎŜǘΩΦ The
error rate in decoding packets correctly was massively reduced by transmitting three END
characters.

The MAC header contains the destination and source addresses of the packet, the packet
type and the length of the data payload, all of which are set by the mainboard. It also
contains the ID of the transmitter the packet is being sent on (the transmit mask for that
LED) and the transmission power, which are added automatically by the communications
board. On reflection, transmitter ID and power may not always be useful and should instead
be sent in the payload only when required. Packets are framed on reception of a SEND_ALL
command from the mainboard. A cyclic redundancy check byte is appended to the trailer of
the packet by executing an update CRC function for each new byte added to the packet.

When packets are transmitted on the LEDs they will be detected by the adjacent receivers,

 28

interfering with any packets that are being received on them. It is desirable to delay packet
transmission until packet reception on the receiver is complete. To do this one would need
to ensure that the mainboard knows not to give the communications board commands to
change the transmit buffers; a handshaking routine could achieve this. Unfortunately there
was insufficient time to realise such a scheme, so a basic solution was implemented which
disables the receivers when a byte is being transmitted. This would work well provided
medium access control protocols were in place to ensure that only one node can transmit in
an area at a time.

5.2.6 IR Packet Reception & Decoding

Receivers are idle hi when they are not receiving any bytes. On reception of data the output
from the receivers will be that of the transmitted bit stream inverted. The first bit change
from the start bit serves as the starting point for sampling of the other bits on that receiver,
the receiver then waits for 3/4 of a bit period and samples the bit signal after the middle
synchronising edge. If there is no transition by 5/4 bit time then the byte is discarded. In the
code an allowance for ±10% error in the bit width is made, and thus a range of 3/4 - 10% to
5/4 + 10% is allowed. Bit width is twice the half bit interrupt count given in the transmit
code, so given 10% leeway this means a count of 156 ± 15.6. This corresponds to a minimum
3/4 count of 111 and a maximum 5/4 count of 226, thus these values appear in the code.

Figure 5.6: Synchronising and sampling of IR data.

Note that because the bit stream is inverted the state of the receiver when sampled will
correspond to inverse logic (an inverted logic 1 is hi to lo, so it is sampled lo). The
implementation of this decoding scheme in code is a bit complicated given it must to deal
with eight receivers rather than just one. To do this another timer-counter running at 1/64th
the main clock speed is used as a counter to feed eight ΨǾƛǊǘǳŀƭΩ ǘƛƳŜǊs. Basically, whenever a
pin change interrupt occurs on one of the receivers the value of the timer-counter is added
to the virtual timers, and the timer-counter reset. In the event of a virtual timer overflow
the virtual timer is reset and any byte being received on that receiver discarded (this is the
same as for the 5/4 bit width timeout for no sync transition). When a receiver has changed
input its virtual timer is read to see if it falls within 3/4 and 5/4 bit width range. If it does the
sampled bit is shifted into the receiver byte buffer, and on reception of eight bits the byte
added to the receiver packet buffer after SLIP decoding.

// ISR for receiver pin ch ange
set delta as timer - counter count
reset counter
enable timer - counter if disabled (on overflow)

store previous receiver pin state
take new receiver pin state
pin change = new rx pin XOR prev rx pin

 29

// update virtual timers
for each timer i: 0 to 7
if (rx timer[i] < 253)
 set rx timer[i] += delta
else
 set rx timer[i] = 253 // overflow

for each receiver i: 0 to 7
if ((rx timer[i] > 226) AND pin[i] has changed)
 // start bit from idle hi or timeout
 reset bit count[i]
 reset rx byte buffer[i]
 res et rx timer[i]
else if ((rx timer[i] within 111 to 226) AND (bit count[i] < 8))
 if !(pin[i]) // inverse logic
 set bit[i] in rx byte buffer[i]
 increment bit count[i]
 if (bit count[i] == 8) // byte received
 do SLIP decoding of byte
 function ir_recv_packet(i)
 reset ir_rx_bit_cnt[i]

When an END character is received the receiver packet buffer is then copied and each byte
passed through a CRC check. If at the end of this check the CRC byte is found to be incorrect
the packet is discarded, also if the packet if found to be addressed to another node it is
discarded (the DA field is neither addressed to the node or a broadcast).

// receive packet function
copy receiver packet buffer

check CRC byte
if (CRC byte is incorrect)

reset buffer by te counter
discard packet & return

if (DA == self ID OR broadcast ID (OxFF))
 discard CRC field
 append rx ID to packet
 forward packet on USART to mainboard using SLIP

reset buffer byte counter

Otherwise packets are forwarded to mainboard via USART with the CRC byte removed and
the receiver ID appended to it like in figure 5.7.

END DA SA TxID TxPOW RxID TYPE LEN 5!¢!Χ END

Figure 5.7: IR received packet forwarded to the mainboard.

5.3 Mainboard

5.3.1 PC Communications

Serial communications with the PC are done via serial UART in order to output data and
provide a debugging platform for the code. An RS232 to TTL circuit is used in order to

 30

convert the output of the mainboard to compliant serial logic levels and HyperTerminal used
to receive messages at the PC.

The code for transmitting bytes over USART (to both the PC and communications board) is
different from that used on the communications board, as a polling routine would waste
valuable clock cycles when other tasks could be doing work. Instead messages are written to
a transmit buffer, and each byte written on the execution of a USART data register empty
interrupt service routine. When the transmit buffer is written to, this interrupt is enabled
and disabled on no bytes remaining to be sent. Note that SLIP protocol is not used to
communicate with the PC (but it is for the communications board).

/ / send byte to PC on USART
pend semaphore(sem pc tx) // initialised to buffer size

add tx byte to buffer
if reach end of buffer point to start
incremen t pc tx cnt

enable data reg empty interrupt

// ISR for USART data reg empty
store register state

if (pc tx cnt)

decrement pc tx cnt
put buffer byte into uart data reg

post semaphore(sem pc tx)

else
disable data reg empty interrupt

restore register st ate

To provide suitable formatting for output to the PC the sprintf statement is used in order to
produce formatted output strings to send via USART. Due to space constraints however, it
was found unfeasible to simply use sprintf statements where format strings are stored in
SRAM. Instead format strings are stored in program memory by using the macro PSTR, and
the sprintf_P statement is used to produce output strings to send to the PC. Static strings
are also stored in program memory and sent over USART via separate PC transmit functions
denoted in the code by the άψtέ ǎǳŦŦƛȄΦ

5.3.2 Control of IR Communications

By issuing commands over USART the mainboard can control the operation of the
communications board by setting the transmission power, the quadrant transmit packet
buffers and the transmit mask which determines on which transmitter LEDs messages are
sent. The commands that can be issued are: SET_TO, SET_FROM, SET_TYPE, SET_DATA,
SET_LEN, SET_TX_POW and SEND_ALL, the structure and operation of which was largely
covered in section 5.2.4.

Access to the Ψsend commandΩ function is protected by a mutex to ensure that access to the
quadrant transmit buffers is exclusive to the task giving the command. Also when writing a
whole message to the transmit buffers the full sequence of commands required is also

 31

mutex protected (to prevent other tasks from overwriting parts of the buffers). Furthermore
a delay of the period required to send a packet is introduced after giving a SEND_ALL
command to ensure that the buffers are not overwritten whilst infrared transmission
occurs.

// command sequence for setting & transmitting a message
pend mutex (mutex comms msg tx)

function send cmd(SET_TO, DA)
function send cmd (SET_FROM, self ID)
function send cmd (SET_TYPE, message t ype)
function send cmd (SET_DATA, data pointer , payload length)
function send cmd (SET_TX_POW, tx power)
function send cmd (SEND_ALL, transmit mask)

delay(time to send)
post mutex(mutex comms msg tx)

Note that on initialisation the mainboard must send a SET_FROM command in order to set
the value of self_id at the communications board, as it is used to determine which received
packets to discard based on destination address.

5.3.3 Idle & Hello Sequence Tasks

In section 4.4 the implementation of the AHDWL algorithm was discussed with reference to
a state machine representation (figure 4.5) of the system. In the code the state diagram is
effectively divided into three tasks as follows:

Figure 5.8: Division of states amongst the RTOS tasks.

There are always at least two tasks running, the idle task and the communications task. The
communications task is inactive until a message is received from the communications board,
where it processes the packet received and performs actions accordingly. The idle task is the
lowest priority task. It is first involved with initialisation of tables and setting the node ID
according to the DIL switch (a node with the DIL MSB set is identified as an anchor node and
its position also set). The task then sits in a while(1) loop where it counts a random delay
time of at least one minute (idle timeout) and then creates a hello sequence transmit task of
higher priority.

 32

// idle task
initialise tables
set self id
function cmd(SET_FROM, self id)

while (1)

for i: 0 to 60 + random (0 to 64)
 increment debug LEDs
 delay(1s)
 ÆÕÎÃÔÉÏÎ ÐÃ ÓÅÎÄƽƧƚƨƾ

 pend semaphore(sem hello seq) // initialised to 1

 create task (hello seq task)

The hello sequence transmit task sends a sequence of hello packets at increasing
transmission power on all transmitters to allow neighbour nodes to determine the
ǘǊŀƴǎƳƛǘǘŜǊ ƴƻŘŜΩǎ ōŜŀǊƛƴƎΦ The hello sequence packet structure is like that in figure 5.7 with
no data payload; the important values are the source address and the transmission power.

END END END DA = 0xFF SA TxID TxPOW = D% TYPE Ґ ΨIΩ LEN = 0 CRC END

Figure 5.9: Hello packet framing using SLIP protocol.

The hello sequence task first sends hello packets on all four quadrants with one ground
transistor set. It increases the power of the packets linearly by a given duty cycle step size to
a maximum duty (of no greater than 80%). The transmission power duty cycle is encoded in
the hello packets. This is repeated for the remaining three ground transistors. To indicate
the end of a hello sequence and to allow the receiver to calculate a bearing hello packets
with a tx power field set to 0xFF are transmitted on each LED. The task then posts a
semaphore signalling to the idle task that it is complete and deletes itself.

// hello seq task
while (1)

 for each ground transistor WXYZ i: 0 to 3
 transmit mask = one of ZYWX bits & DBCA set
 pow = POWER_MIN
 while (pow <= POWER_MAX)

 pend mutex (mutex comms msg tx)
 ÔÒÁÎÓÍÉÔ ÈÅÌÌÏ ÐÁÃËÅÔƽ$!ƙ!,,Ɨ 3!ƙÓÅÌÆ ÉÄƗ ÔÙÐÅƙƦ(ƦƗ ÔØÐÏ×ƙÐÏ×ƾ
 pow += POWER_STEP
 post mutex (mutex comms msg tx)

 // end hello seq
 for each ground transistor WXYZ i: 0 to 3
 transmit mask = one of ZYWX bits & DBCA set

 pend mutex (mutex comms msg tx)
 transmit packet(DA:ALL, SA:self IDƗ ÔÙÐÅƙƦ(ƦƗ ÔØÐÏ×ƙ0xFF)
 post mutex(mutex comms msg tx)

 post semaphore (sem hello seq)
 delete task(hello seq task)

 33

5.3.4 Communications Task

The communications task is highest priority task where the majority of the work is done,
taking measurements of local bearings by reception of hello packets, updating neighbour
tables, sending neighbour table update packets and performing localisation. The task is
typically in an idle state pending on a signalling semaphore which is posted by the ΨUSART
byte receivedΩ ISR when a full packet (an END character) is received from the
communications board. Note that packets must be valid (pass a CRC check) and correctly
addressed to even be forwarded to the mainboard.

// comms task
while (1)
 pend semaphore(sem comms rx)

copy recei ved packet to buffer

 if SA is new add it to neighbour table

ÉÆ ƽÔÙÐÅ ˮˮ ƥ(Ʀƾ
 if (tx power != 0xFF)
 if (!hello flag)
 set hello flag

 else if (SA != hello node id)
 discard packet
 else
 use packet in hello array
 else
 reset hello flag
 calculate bearing
 recalculate position estimates affected by new bearing

 if (self status ! = ƥUƦ)
 send neighbour update packet

 ÅÌÓÅ ÉÆ ƽÔÙÐÅ ˮˮ ƥ.Ʀƾ
 decode position and bearing data
 add positio n and bearing data (for other known nodes) to tables
 if (self status != ƥAƦ)
 check neighbour table and update self hops if required
 do position calculation for all triangles with SA as a ref node

 if (self status != ƥUƦ)
 send neig hbour update packet

When a packet is received it is copied to a buffer. If the packet is from a node never seen
before the source address is added to the neighbour table as a new node.

In the code a hello sequence can only be received from one node at a time. Originally
consideration was given to providing capability for receiving up to two or three sequences
simultaneously but was dismissed due to memory constraints. Later significant savings in
memory were achieved, but there was insufficient remaining time to implement this.
¢ƘŜǊŜŦƻǊŜ ƻƴ ǊŜŎŜƛǇǘ ƻŦ ŀ ƘŜƭƭƻ όΨIΩύ ǇŀŎƪŜǘΣ ƛŦ ǘƘŜ ǇŀŎƪŜǘ ƛǎ ǘƘŜ ŦƛǊǎǘ ǊŜŎŜƛǾŜŘ ǘƘŜ ǘǊŀƴǎƳƛǘǘƛƴƎ
node ID is recorded and a flag set. Any hello packets from a different node will be discarded
while this flag is set. The flag is unset and the hello sequence ends on receipt of a hello
packet of power 0xFF, then a bearing estimate can be made. If this new bearing information
affects any neighbour triangles at the receiver, new position estimates for those triangles
are made (given sufficient information is available) and the current position estimate

 34

updated.

²ƘŜƴ ŀ ƴŜƛƎƘōƻǳǊ ǘŀōƭŜ ǳǇŘŀǘŜ ǇŀŎƪŜǘ όΨbΩύ ƛǎ ǊŜŎŜƛǾŜŘ hop count, position and bearing
data are decoded and added to the neighbour and bearing tables. Position estimates are
made for all neighbour triangles which the transmitting node forms with the receiver, given
there is sufficient information to do so. Details regarding neighbour table update packets
are provided in the next section.

5.3.5 Neighbour Table Update Packet

Neighbour table update packets are sent on reception of either a complete hello sequence
or a neighbour table update packet, provided that the receiving node has a current valid
position estimate (is of known status). A node is initialised as being either an anchor node
ǿƛǘƘ Ǉƻǎƛǘƛƻƴ ǎǇŜŎƛŦƛŜŘ όŀƴŎƘƻǊ ǎǘŀǘǳǎ Ψ!Ωύ ƻǊ ŀ ƴƻŘŜ ƻŦ ǳƴƪƴƻǿƴ Ǉƻǎƛǘƛƻƴ όǳƴƪƴƻǿƴ ǎǘŀǘǳǎ
Ψ¦ΩύΦ ¢ƘŜ ƳƛƴƛƳǳƳ ǊŜǉǳƛǊŜƳŜƴǘ ŦƻǊ ǎŜƴŘƛƴƎ ŀ ƴŜƛƎƘōƻǳǊ table update packet is a current
valid position estimate όƪƴƻǿƴ ǎǘŀǘǳǎ ΨYΩύ and a hop count from the nearest anchor node
(anchor nodes have a hop count of zero and are recognised as such).

x1 x2 y1 y2 hops n1 ID ʊn1 1 ʊn1 2 Χ nN ID ʊnN 1 ʊnN 2

Figure 5.10: Data payload for neighbour table update packet

An encoding scheme for position and bearing data was created in order to reduce the length
of packets whilst achieving sufficient accuracy. In this scheme only two bytes are used for x
and y position data as well as for each bearing.

Position information is encoded simply as a signed integer over two bytes. For encoding say
an x value it is converted from a double value in metreǎ ǘƻ ŀ ǎƛƎƴŜŘ ƛƴǘŜƎŜǊ όнΩǎ ŎƻƳǇƭŜƳŜnt
in C code) value in centimetres. The upper eight bits are then put into the x1 byte and the
lower eight bits into the x2 byte. It is decoded by sticking these two bytes together as an
integer and converting back from centimetres into metres. This means that values of up to
ǘǿƻ ŘŜŎƛƳŀƭ Ǉƻƛƴǘǎ ŀŎŎǳǊŀŎȅ ŦǊƻƳ ҍонтΦсуƳ ǘƻ онтΦстƳ Ŏŀƴ ōŜ ŜƴŎƻŘŜŘΦ LŦ ŘŜǎƛǊŀōƭŜ
millimetre accuracy could be achieved by conversion from metres to millimetres, resulting
ƛƴ ŀ ǊŀƴƎŜ ƻŦ ǾŀƭǳŜǎ ҍонΦтсуƳ ǘƻ онΦтстƳΦ

A more novel approach is taken for encoding bearings. Given a possible range of bearing
values from 0° up to but not including 360°, maximum accuracy can be achieved by setting
0x0000 to 0° and 0xFFFF one step below 360°.

360
Step Size 0.0055

65535
= =

(5.1)

That is, a maximum resolution with a step size per bit of 0.0055°. To achieve this bearings
are encoded as follows.

65535
(int)

360
nNI f=

(5.2)

 35

This value is rounded to the nearest unsigned integer and then the top eight bits and lower
eight bits transmitted. Decoding is achieved by inverting equation 5.2 above and forcing the
division to be done as a double type after sticking the two received bytes back together as
an unsigned integer.

360
(double)

65535
nN If =

(5.3)

Upon receiving a neighbour table update packet a node will add the information contained
to its bearing and neighbour tables (which are covered in the next section). If in a neighbour
table update packet, there is bearing information about a node the receiver has not
previously received a packet from then that bearing is ignored; even though the node is a
neighbour of the transmitter it may not be a neighbour of the receiver.

A neighbour table update packet is transmitted at maximum power to all nodes in the
neighbour table for which there is local bearing data. A crude method of directional routing
is achieved by taking those bearings and transmitting on the nearest transmitter LEDs. As
only one packet is sent to ensure a neighbour will not receive multiple neighbour table
update packets (which could result in multiple position estimates being made from the
same data reducing the effect of the AHDWL).

// neighbour table update packet transmission
for all neighbour nodes in neighbour table i: 1 to 7

if (local bearing[i] != NAN)
 find nearest quadrant ABCD
 find nearest LED WXYZ
 set transmit mask accordingly

 pend mutex(mutex comms msg tx)
 ÔÒÁÎÓÍÉÔ ÐÁÃËÅÔƽ$!ƙÉƗ 3!ƙÓÅÌÆ ÉÄƗ ÔÙÐÅƙƦ.ƦƗ ÔØÐÏ×ƙ-!8Ɨ ÄÁÔÁƙÐÏÓÉÔÉÏÎƗ ÈÏÐÓ
 and local bearing info)
 post mutex(mutex comms msg tx)

5.3.6 Neighbour & Bearing Table Management

Each node maintains a table of information about itself and its neighbour nodes, so that
when new data is received, updated position estimates can be made using that data and
then stored in the table. The table contains informatiƻƴ ŀōƻǳǘ ŜŀŎƘ ƴƻŘŜΩǎ ǎǘŀǘǳǎΣ ƘƻǇ
count, current position and bearings to other nodes.

ID status x est y est hops self n1 ... nN

self self.status xself yself dself - ʊselfn1 ... ʊselfnN
n1 n1.status x1 y1 d1 ʊn1self - ... ʊn1nN

...

...

...

...

...

...

...

...

nN nN.status xN yN dN ʊnNself ʊnNn1 ... -

Figure 5.11: Neighbour and bearing data table.

Given that there was only five nodes in the testbed with a limited amount of flash memory
available it was decided to limit the size of the table to accommodate for a maximum of
eight nodes (including the node on which it is stored). For a large network of nodes it would

 36

be desirable to use dynamic memory allocation rather than pre-allocating it as done in the
code, but for a network of up to eight nodes this is sufficient and makes management of the
table somewhat easier.

In the code this table is split up into two data structures, the first is an array of structure
variables with character type fields for ID, status and hop count as well as double type fields
for x estimate & y estimate, and hop count which constitutes the neighbour table. On
initialisation according to the DIL switch self ID and self status fields are filled, and for an
anchor node the hop count is set to zero and the x, y position data is set as specified in the
ŎƻŘŜΦ ¢ƘŜ ǊŜƳŀƛƴŘŜǊ ƻŦ ǘƘŜ ƴƻŘŜ L5ǎ ŀǊŜ ǎŜǘ ǘƻ лΣ ǘƘŜ ǎǘŀǘǳǎ ŦƛŜƭŘǎ ǎŜǘ ǘƻ Ψ¦Ω ŦƻǊ ǳƴƪƴƻǿƴ
status, the x and y fields set to NAN (not a number) and hop count fields set to 0xFF.

The second data structure is an 8 × 8 double type array of bearing variables. The row and
columns correspond to the node IDs given in the neighbour table. A variable ʊij (row i,
column j) in the array corresponds to the bearing of node j taken from node i. For example
local bearings ʊselfj are all given in the first row of the array. The entire bearing table is
initialised to NAN on declaration.

On reception of a packet the neighbour table is checked to see if the transmitter node is
already listed, this is done by checking the source address against the node IDs in the table.
If a node ID is found to match the row index is recorded (effectively a neighbour table
pointer), if no node ID is found to match then the first node ID which is zero (as initialised)
has its row index recorded, and the source address will be written to the node ID field. In
this way new nodes are added to the table.

// add node to neighbour table if new
for rows i: 1 to 7 //self is row 0
 if (node ID == SA)
 break

else if (node ID == 0)
 set node ID = SA

 break

set neighbour table row pointer = i

On reception of a hello packet sequence a new bearing will be written to the first row of the
bearing table which corresponds to the local bearings, to the column of the transmitter
node. The majority of information in the neighbour and bearing tables comes from
reception of neighbour table update packets. These packets fill out all the remaining rows of
the neighbour and bearing tables by providing position, hop count and bearing data. Note
ǘƘŀǘ ƛŦ ǘƘŜǊŜ ƛǎ ōŜŀǊƛƴƎ ƛƴŦƻǊƳŀǘƛƻƴ ŀōƻǳǘ ŀ ƴƻŘŜ ǘƘŜ ǊŜŎŜƛǾŜǊ ŘƻŜǎƴΩǘ ƘŀǾŜ ƛƴ ƛǘǎ ƴŜƛƎƘōƻǳǊ
table, then that information is discarded. The status of the transmitting node is determined
by its hop count, if it is zero then the node is an anchor otherwise it is a node of known
position (position must be known to transmit a neighbour table update packet).

Hop count of a non anchor node is determined directly by checking the neighbour table. It is
simply the minimum of all the hop counts in the neighbour table plus one, as these are one
hop neighbours. A non anchor node can only have its status change from unknown to
known when a valid position estimate is made, which requires sufficient bearing and
position information from at least two reference nodes to make a neighbour triangle.

 37

5.4 Localisation

5.4.1 Bearing Calculation

The bearing calculation method which uses a sequence of hello packets, as outlined in
section 4.1, is implemented as follows. A character type array with eight cells representing
each receiver is initialised to zero before receiving the first hello packet; this array
represents the transmission power of hello packets received on the receivers. When a hello
packet is received on a receiver its transmission power is checked against that stored in the
array. If the array value is zero or if the packet power is less than the array value, then the
transmission power is written to the array. In this way the minimum power of all packets
received on each receiver is recorded.

From this array the receiver which received a hello packet at the lowest transmission power
is identified and recorded, this receiver is assigned as temporarily as the 0° bearing. The
other receivers are assigned local bearings in sequence as 45°, 90°, 135°, 180°, -135°, -90°
and -45° taken clockwise from the minimum power receiver. Using the minimum received
powers and these temporary bearings, a value for the delta angle from the minimum power
receiver is calculated and thus the final bearing estimate is obtained. The bearing table is
then updated for this new local bearing estimate.

// calculate bearing given power array
for receivers ID i: 1 to 7
 if (array[i] != 0)
 if ((array[i] < hello_array[rxmin]) OR (array[rxmin] == 0))
 set rxmin = i;

for receivers ID i: 0 to 7
 //r xmin assigned as bearing 0

set j = (rxmin + i) mod 8;
// sequence 0, 45, 90, 135, 180, - 135, - 90, - 45
if (i<=4)
 set rxangle = 45*i;
if (i>4)
 set rxangle = - 180 + 45*(i - 4);

 if (array[j] != 0) {
 set num = sum((POWER_MAX - array[j]) × rxangle)
 set den = sum(POWER_MAX - array[j])

bearing = num/den + rxmin*45
if (bearing < 0)
 set bearing += 360

reset array
function update bearing table(self , SA, bearing)

5.4.2 Position Estimation

Position estimation in the code is a direct implementation of all the equations and the
phantom elimination method outlined in section 4.2, and as such does not need to be
covered further here. The issue of noise sensitivity due to errors in angle measurements was
also touched upon this section, and highlighted as another possible means of weighting

 38

estimates. In this implementation however only a simple check is applied to see if estimates
are going to be unduly affected by noise sensitivity.

// noise sensit ivity check
ÉÆ ƽǷacb, Ƿcba or Ƿbac fall within ±20° of 0° or 180°)
 return without doing a position estimate

If a discrimination angle falls within 20° of the angles 0° or 180°, this would make an almost
collinear triangle with angles very sensitive to noise. In such a case a position estimate is not
made, judged as being too unreliable.

5.4.3 AHDWL

For non anchor nodes position estimates are combined to produce a single current position
estimate using the equations of the AHDWL weighting algorithm outlined in section 4.3.

// AHDWL
set d = (n1 hops + n2 hops) + 2
set beta = BETA_BASE/d
set alpha = 1 - beta

if x est AND y est are valid

if self x and self y are NAN
 // update neighbour table 1st estimate

 set self x = x est
 set self y = y est

else
 // update neighbour table 1st estimate

 set self x = alpha × self x + beta × x est
 set self y = alpha × self y + beta × y est

The first valid position estimate made is written directly to the neighbour table as the
current estimated position. Thereafter position estimates are weighted based on the anchor
hop counts of their reference nodes.

5.5 Brief Walkthrough

To assist understanding an example scenario and a walkthrough of the code response is
presented. Consider a single neighbour triangle within an ad hoc network which initially
consists of an anchor node (A) and two nodes of unknown position (B & C), here the
response of node C is examined.

Figure 5.12: Neighbour triangle ABC which forms part of an ad hoc network.

 39

Node C first receives a hello sequence from node A. Node A is added to the neighbour table
and the local bearing of node A is calculated and added to the bearing table. Node C then
receives a hello sequence from node B and again adds this information to the neighbour and
bearing tables. Upon reception of this hello sequence, node A sends a neighbour table
update packet which contains its own position information as well as the bearing of node B
taken at node A. ¢Ƙƛǎ Ǉƻǎƛǘƛƻƴ ŀƴŘ ōŜŀǊƛƴƎ ƛƴŦƻǊƳŀǘƛƻƴ ƛǎ ŀŘŘŜŘ ǘƻ ƴƻŘŜ /Ωǎ ǘŀōƭŜǎΣ ŀƴŘ ƴƻŘŜ
A is identified as an anchor with a hop count of zero. Therefore node C finds its own hop
count to be one.

ID status x est y est hops C A B

C U NAN NAN 1 - ʊCA ʊCB
A A xA yA 0 NAN - ʊAB
B U NAN NAN 0xFF NAN NAN -

Table 5.1: NƻŘŜ /Ωǎ ǘŀōƭŜǎ upon receiving a neighbour table update packet from anchor node
A.

Node C then sends its own hello packet sequence having reached timeout for its idle task.
This triggers an immediate neighbour table update packet response from node A which now
contains the bearing of node C at node A. This new information is added to the bearing
table. Later node B transmits a neighbour table update packet, with position and hop count
information as well as the bearing information of nodes A, C and another node. This means
that node B has been able to perform position estimation with that other node and node A
as references. This information is added to the neighbour and bearing tables of node C, with
the exception of the bearing of the node unknown to it, and node A is updated as being of
known status.

Given there are two nodes with position data and there is bearing data to and from each
node in the triangle, node C can perform a position estimate. Given that this is the first
position estimate node C makes, AHWDL is not applied, but the node now becomes of
known status given a valid position estimate has been made. Node C then updates its own
information in the neighbour table and sends a neighbour table update packet to nodes A
and B. Future packets received will then be used to make new position estimates which will
ōŜ ǿŜƛƎƘǘŜŘ ǳǎƛƴƎ !I5²[ǘƻ ǳǇŘŀǘŜ ƴƻŘŜ /Ωǎ ǇƻǎƛǘƛƻƴΦ

ID status x est y est hops C A B

C K xC est yC est 1 - ʊCA ʊCB
A A xA yA 0 ʊAC - ʊAB
B K xB yB dB ʊBC ʊBA -

Table 5.2Υ bƻŘŜ /Ωǎ ǊŜǎǳƭǘŀƴǘ ƴŜƛƎƘōƻǳǊ ŀƴŘ ōŜŀǊƛƴƎ ǘŀōƭŜǎΦ

 40

6. Testing & Evaluation

6.1 Bearing Testing

The aim of the following tests was to check the range and standard deviation for calculated
bearings by sending hello sequences at different step sizes of transmission power (duty
cycle).

Figure 6.1: Bearing test set up at a range of 1m with receiver node left and transmitter node
right.

The receiver node was set up at a range of 1m from the transmitter node, and placed at
angles of approximately 0°, 30°, 45°, 60°, 90° and 135°. At each angle 50 hello sequences
were sent for step sizes of 2%, 4%, 6%, 8% and 10% transmission duty. Each sequence
started at the given step size and increased up to a maximum duty of 80%. The following
table gives a summary of the results of the tests, with the actual observations given in
Appendix A.1.

 Angle 2% 4% 6% 8% 10%

Mean 0° 1.30 1.75 3.00 3.79 1.67

 30° 26.57 27.02 28.75 28.39 30.21

 45° 45.87 45.70 44.34 47.30 44.78

 60° 66.15 65.87 64.93 65.13 63.24

 90° 90.86 90.71 91.24 90.99 89.99

 135° 133.98 134.38 135.17 134.95 141.46

Variance 0° 4.23 6.80 13.03 18.30 18.72

 30° 5.52 6.07 5.71 11.13 4.96

 45° 2.31 8.08 20.65 42.82 42.23

 60° 0.76 3.65 9.22 9.24 10.91

 90° 10.00 10.78 10.73 15.86 19.27

 135° 7.62 12.09 17.49 28.91 51.70

Std Dev 0° 2.06 2.61 3.61 4.28 4.33

 30° 2.35 2.46 2.39 3.34 2.23

 45° 1.52 2.84 4.54 6.54 6.50

 60° 0.87 1.91 3.04 3.04 3.30

 90° 3.16 3.28 3.28 3.98 4.39

 135° 2.76 3.48 4.18 5.38 7.19

 41

Table 6.1: Descriptive statistics of bearing test results at 1m range.

As one would expect, for an increasing step size a typically increasing variance and standard
deviation is obtained. The resolution of the calculated bearing values is also seen to reduce.
These results are as expected; with a greater resolution of step sizes available more precise
measurements of the minimum transmission power for receiver connectivity can be made
thus giving a better centroid calculation. The majority of the tests found that the average
bearing calculation was within 10° of the actual bearings as measured by hand.

Standard deviation is the best measure of dispersion given here because (unlike variance) it
is given in the same units as the calculations (degrees). It can be said with 95% confidence
that a bearing calculation will lie within two standard deviations of the mean. In the above
results (table 6.1) the largest standard deviation was 7.19, meaning there was a 95%
probability of a bearing calculation lying within ±14.4° of the mean. For applications such as
directional routing, given the Sens-r transmitters are placed at about 22.5° apart from each
other, even this is reasonably good result; packets could be forwarded to neighbours with
reasonable confidence by using the nearest three transmitters to the calculated bearing.

There is a trade off here however between accuracy and time. The smaller the step size, the
greater the bearing accuracy but so to the longer the hello sequence will take to transmit. At
a step size of 2% a hello sequence will take 32.8s at 200ms per packet. Likewise 4% will take
16.8s, 6% will take 11.2s, 8% will take 8.8s and 10% will take 7.2s. Consideration needs to be
given to the maximum time a node can be allowed to transmit, and there is a clear need for
media access control to ensure that nodes will not transmit whilst a neighbour is sending a
hello sequence as a few missed packets can result in a very different bearing calculation.

A method that could be used to achieve higher accuracy with lower step sizes would be to
apply a moving average or median filter to bearing calculations made. For example consider
the results from the 1m range 0° bearing test for a step size of 8%, then apply moving
average and median filters with a window for up to five bearing calculations.

Bearing
Calc

Moving
Avg

Median
Filter

Bearing
Calc

Moving
Avg

Median
Filter

Bearing
Calc

Moving
Avg

Median
Filter

0 0 0 8.18 4.772 3.75 8.18 4.022 3.75

3.75 1.875 1.875 -3.75 4.022 3.75 3.75 4.772 3.75

3.75 2.5 3.75 -3.75 2.522 3.75 8.18 4.772 3.75

3.46 2.74 3.605 -3.75 1.022 -3.75 8.18 6.408 8.18

3.75 2.942 3.75 8.18 1.022 -3.75 3.75 6.408 8.18

0 2.942 3.75 8.18 1.022 -3.75 0 4.772 3.75

0 2.192 3.46 8.18 3.408 8.18 8.18 5.658 8.18

0 1.442 0 3.75 4.908 8.18 8.18 5.658 8.18

0 0.75 0 8.18 7.294 8.18 3.75 4.772 3.75

8.18 1.636 0 0 5.658 8.18 8.18 5.658 8.18

8.18 3.272 0 3.75 4.772 3.75 8.18 7.294 8.18

-3.75 2.522 0 -8.18 1.5 3.75 8.18 7.294 8.18

3.75 3.272 3.75 8.18 2.386 3.75 8.18 7.294 8.18

0 3.272 3.75 0 0.75 0 0 6.544 8.18

3.75 2.386 3.75 8.18 2.386 3.75 3.75 5.658 8.18

3.75 1.5 3.75 0 1.636 0 5 5.022 5

 42

8.18 3.886 3.75 3.75 4.022 3.75 - - -

Table 6.2: Moving average and median filters applied to 1m range, 0° bearing, 8% step size
results.

Bearing

Calc
Moving

Avg
Median
Filter

Mean 3.79 3.68 3.92

Variance 18.30 4.03 11.42

Std Dev 4.28 2.01 3.38

Range 16.36 7.29 11.93

Table 6.3: Descriptive statistics for the moving average & median filters applied.

Both the moving average and median filters result in less variance in the bearing
calculations. However applying such a filter would also reduce the responsiveness of the
system to changes in node positions, as at multiple hello sequences would need to be
received (depending on the size of the filter window) before reaching a new stable bearing.
This would be particularly true of MANETs and a relative non issue for stationary networks.

To apply a moving average filter to bearing data in the code as given would arrays (of the
filters window size) for each local bearing in the bearing table to store past calculations. This
would be relatively simple to implement as outlined below.

// bearing calculation moving average filter (five data points)
// bearing data[] initialised to NAN

for i: 0 to 4

if((bea ring data[i] == NAN) OR (i == 4))
 break
set bearing data[i] = bearing data[i +1]

set bearing data[i] = new bearing

bearing = function avg(bearing data[0 to i])
// for median filter
// bearing = function median(bearing data[0 to i])

6.2 Position Calculation

Before implementing the code on the testbed, testing was done In order to ensure that
position calculation and phantom elimination worked correctly. This was done by simulating
packet reception at the mainboard, that is to say explicitly specifying packets and their
contents to be decoded at the mainboard. In the code, this meant using the idle task to
signal the communications task semaphore (rather than the USART ISR), and using a counter
to determine what packet was to be decoded by the task.

// id le task test code
1 min + random delay

post semaphore(sem comms rx)

// comms task test code
pend semaphore(sem comms rx)
increment packet counter

 43

switch(packet counter)
 put simulated data into packet for given packet count

respond to simulated packet

The first set of tests for position calculation were for triangles where ||xA ï xB|| = ||yA ï yB||.
This was because it was unclear how the original algorithm would cope with such scenarios
and also because for such triangles it is easy to calculate expected results (right angled
triangles with 45° discrimination angles).

Figure 6.2: Simulation test for ||xA ï xB|| = ||yA ï yB||.

With some modifications to the original scheme resulting in that outlined in section 4.2, a
successful simulation test with neighbour nodes at equal distances in the positive and
negative x and y directions was performed (as shown in figure 6.2). For each triangle
combination the correct result of (0,0) was obtained.

Successful simulations were also conducted for triangles where ||xA ï xB|| Í ||yA ï yB||. One
of these tests is detailed below.

Figure 6.3: Simulation test for ||xA ï xB|| < ||yA ï yB||.

This triangle was simulated by using the follow packet sequence.

Packet No. SA Packet Type Info

1 1 H Pow: 8, Rx ID: 1 (45°)
2 1 H Pow: 0xFF (end seq)

 44

3 2 H Pow: 8, Rx ID: 3 (135°)
4 2 H Pow: 0xFF (end seq)
5 1 N x: 0, y: 0, hops: 0, ʊ1self: 225°, ʊ12: 180°
6 2 N x: 0, y: -10, hops: 0, ʊ2self: 0°, ʊ21: 315°

Table 6.4: Received packet sequence for simulation test.

This resulted in the correct position estimate of (-5,-5) being made and output to the PC as
shown below in figure 6.4.

Figure 6.4: Results of the simulation test as seen on PC terminal.

By doing these tests the code operation, position calculation and phantom elimination
methods were demonstrated to work given successful packet reception at the receiver.
Testing then moved from simulated reception at single Sens-r node to a triangle of three
nodes.

Figure 6.5: Experimental set up for position estimation with the lower left node unknown,
the other two nodes as anchors.

This set up exposed a number of problems with the code as it stood. Originally after

 45

reception of a hello sequence anchor or known nodes would then immediately transmit a
neighbour table update packet, however given the implementation of sending hello packets
of power 0xFF on each LED to end the sequence a delay had to be introduced. This delay
ǿŀǎ ƻŦ ŀ ǊŀƴŘƻƳ ǇŜǊƛƻŘ ǘƻ ŜƴǎǳǊŜ ƳǳƭǘƛǇƭŜ ƴƻŘŜǎ ǿƻǳƭŘƴΩǘ ǘǊŀƴǎƳƛǘ ǘƘŜƛǊ ƴŜƛƎƘōƻǳǊ table
update packets simultaneously.

Another problem was in preventing the simultaneous transmission or partial transmission of
hello sequences by nodes. Simultaneous transmissions render the packets sent useless, as
they are corrupted and therefore discarded for failing CRC checks. An attempted solution to
the problem was to implement a wait and random resend routine, where if a message is
being received then transmission is delayed and an attempt to resend made after a random
period of time.

A further difficulty involved neighbour table update packets being missed at their intended
recipient nodes. This may have been caused by inaccurate bearing calculations affecting
which LED the packet was to be forwarded on or simultaneous transmissions as mentioned
previously.

It became quite clear, that without implementing proper media access control and
directional routing, position estimation would be practically unachievable. Estimates were
able to be made but the length of time it took to successfully receive the necessary packets
(requiring multiple resends before a packet was received) made the process so slow as to be
made redundant. Only by strictly controlling when each node was to transmit and on which
transmitter LEDs was successful position estimation was achieved. Given the problems in
achieving position estimation for a single neighbour triangle, position testing was halted at
that point and unfortunately there wasƴΩǘ sufficient time to attempt to implement a MAC
scheme.

6.3 System Evaluation

By using the Sens-r testbed and code it was found that reasonable accuracy can be achieved
by using the bearing calculation method outlined in this paper. Higher accuracy is achieved
for sending hello sequences with smaller step sizes in transmission power, however the
smaller the step size the longer it takes to transmit a hello sequence. Another method to
improve accuracy is achieved by applying a moving average or median filter to bearing
ŎŀƭŎǳƭŀǘƛƻƴǎΣ ŀƭǘƘƻǳƎƘ ǘƘƛǎ ǿƻǳƭŘ ƭƻǿŜǊ ǘƘŜ ǎȅǎǘŜƳΩǎ ǊŜǎǇƻƴǎŜ ǘƛƳŜ to topology changes.

Position calculation and phantom elimination was found to work correctly through
simulated reception of packets at the receiver node but problems with simultaneous
transmission and directional routing made it difficult to achieve on the actual testbed.
Unfortunately due to these problems, significant testing beyond making single position
estimates was not achieved. This means that a real life assessment of many aspects of
system performance were unable to be made. This includes for example, the effectiveness
of the AHDWL as compared to just EWMA, effectiveness of different methods of weighting
by hop count, examining system robustness in dealing with node failures and efficiency in
obtaining new estimates given a changed node structure.

 46

7. Conclusions & Recommendations

7.1 Conclusion

The primary aim of this project was to implement an angle based localisation scheme for
infrared ad hoc networks which reduces error accumulation that other iterative localisation
ƳŜǘƘƻŘǎ ǎǳŦŦŜǊ ŦǊƻƳ ŀƴŘ ŘƻŜǎƴΩǘ ǊŜƭȅ ǳǇƻƴ ŜȄǇƭƛŎƛǘ signal strength indicators. The two main
outcomes of the project were one, a testbed of five non mobile Sens-r nodes to provide a
test platform for the scheme and two, the successful implementation of the scheme in code.

Testing of the code found that using the method outlined in this paper, bearings could be
calculated to reasonable accuracy without the need for RSSI, although it takes a significant
amount of time to make a measurement due to the length of the transmitted sequences.
Longer sequences of greater transmission power resolution were found to produce more
accurate results. Applying a moving average or median filter was also shown to improve
accuracy.

Position estimation was found to work correctly by simulating reception of packets at the
receiver node. This demonstrated that the localisation scheme works given successful
packet reception. However there were significant problems with regard to packet reception
when trying to perform position estimation on the actual testbed. This is mainly attributed
to packet collisions due the lack of a media access control scheme.

The work done in this project contributes to research in the areas of localisation and optical
ad hoc networks. It is hoped that this project provides a platform upon which future work in
these fields can be based.

7.2 Recommendations for Future Work

Clearly the immediate focus of future work should be implementing a directional media
access control scheme to prevent simultaneous transmissions from neighbours interfering
with each other. Without media access control simultaneous transmissions can corrupt
packets which in terms of the localisation scheme, means a receiver node may miss
neighbour table update packets or miss a number of packets in a hello sequence, resulting
in inaccurate bearing estimations.

A possible media access control scheme would be to implement a network allocation vector
as a means to do virtual carrier sensing. For example, when a node wants to transmit it
could first send a packet which specifies the time it will take to send its following packets,
or in the MAC header there could be an NAV duration field which tells other nodes not to
transmit for that specified period. Neighbour nodes then take this value and store it in a
NAV counter which decrements to zero over time, at which point they are free to try and

 47

gain the right to transmit. Random wait times might also need to be implemented to
prevent collisions between initial packets. Implementing proper MAC would also likely help
ǎƻƭǾŜ ǘƘŜ ǇǊƻōƭŜƳ ǿƘŜǊŜ ŀ ƴƻŘŜΩǎ ƻǿƴ ǘǊŀƴǎƳƛssions interfere with packets on its receivers
by preventing transmission and reception from occurring simultaneously in the same
direction.

Another area of work to be done is in directional routing, in particular forwarding of packets
to specific nodes utilising the directionality of the transmitter LEDs. A crude implementation
was given in the code for transmitting of neighbour table update packets, by sending on the
closest transmitter, however it is likely a better method could be found.

Future work would undoubtedly involve moving to a larger testbed of say 20 nodes and
upwards. For such a network it would be best to utilise dynamic memory allocation rather
than pre-allocating it for the neighbour and bearing tables. Fortunately the AVR C library
provides functions for dynamic memory allocation to on board and external RAM.
Alternatively it may be beneficial to use PC to simulate the role of the mainboard, removing
the concern for memory. By using a simpler node design with a single communications
board using USB, multiple nodes could be controlled through a single USB hub. This would
provide data on the state of many nodes in the network as well as greatly reducing the
debug process time.

Also, with regard to the tables, it would be advisable to impleƳŜƴǘ ŀ ǎƻǊǘ ƻŦ ΨǘƛƳŜ ǘƻ ƭƛǾŜΩ
scheme for node data in order to account for node failures. In the current scheme, if a node
Ŧŀƛƭǎ ƛǘǎ Řŀǘŀ ǊŜƳŀƛƴǎ ƛƴ ƛǘǎ ƴŜƛƎƘōƻǳǊǎΩ ǘŀōƭŜǎΤ ƛŦ ƛǘ ǿŜǊŜ ŀƴ ŀƴŎƘƻǊ ƴƻŘŜ ǘƘŜƴ ƛǘǎ ƴŜƛƎƘōƻǳǊǎ
would think they are one hop nodes, affecting the weightings applied to position data across
that area of the network. One could apply TTL to data in the table, which on expiring would
be prohibited from use in anchor hop and position estimate calculation until a new packet
from that node is received.

Another essential and quite simple change would be to alter the code such that two or three
hello sequences could be received at a time by using multiple receive buffers. This would be
useful in the case where a node can see two neighbours directly opposite each other, but
where they cannot see each other and so both transmit hello sequences.

 48

References

1. WƻǎŜǇƘ ±ƛƻƭƛΣ ¸Φ !ƘƳŜǘ ŜƪŜǊŎƛƻƐƭǳΣ ŀƴŘ !ƴŘǊŜǿ tǊƛŎŜΣ Incorporating Multiple
Estimates for Accurate Localization in Infrared Ad Hoc Networks (draft rev 1335),
Department of Electrical & Computer Systems Engineering, Monash University,
Australia, December 23, 2008.

2. Sens-r: A Low-cost Wireless Sensor Node with Mobility, TWiki.WSensornets [Online].

Available: http://ctieware.eng.monash.edu.au/twiki/bin/view/WSensornets/Sens-r

3. Michael Broxton, Joshua Lifton, and Joseph A. Parasido, Localization on the pushpin
computing sensor network using spectral graph drawing and mesh relaxation, ACM
SIGMOBILE Mobile Computing and Communications Review, Volume 10, 2006.

4. Jim Pugh and Alcherio Martinoli, Relative Localization and Communication Module

for Small-Scale Multi-Robot Systems, IEEE International Conference on Robotics and
Automation, 2006.

5. AquaJelly: An Artificial Jellyfish with Electric Drive Unit, Festo, 2008. Available:

http://www.festo.com/cms/en-us_us/5889.htm

6. WinAVR, Open Source Toolkit, June 10, 2006 [Online]. Available:
http://winavr.sourceforge.net/index.html

7. AVR Freaks, AVR Community [Online]. Available: http://www.avrfreaks.net

8. BRM-1030 Infrared Receiver Module, Bright LED Electronics Corp. Available:

http://www.datasheetarchive.com/pdf-datasheets/Datasheets-4/DSA-64063.pdf

9. Jean J. Labrosse, MicroC/OS-II: The Real-Time Kernel, 2nd Ed., CMP Books, 2002.

10. David McKechnie, Real-Time Control over Wireless Links, Department of Electrical &
Computer Systems Engineering, Monash University, Australia, 2008.

11. AVR Studio 4, AVR Integrated Development Environment [Online]. Available:

http://www.atmel.com/dyn/Products/tools_card.asp?tool_id=2725

12. Joseph Violi, Accurate Node Localisation in Ad Hoc Networks using Directional Pulsed
Infrared Light Communications, Department of Electrical & Computer Systems
Engineering, Monash University, Australia, December 2008.

13. Sean Hoyt, Sam McKennoch, and Linda G. Bushnell, An Autonomous Multi-Agent

Testbed using Infrared Wireless Communication and Localization, Technical Report,

 49

Department of Electrical Engineering, University of Washington, 2005.

14. A. M. Chandra, Higher Surveying, New Age International, 2005.

15. µC/OS-II AVR GNU port, Julius Luukko, July 21, 2003 [Online]. Available:
http://www.micrium.com/downloads/ports/ucos-ii/at-avr-jlu-210703

16. AVR Libc 1.6.4, C Library for Atmel AVR 8-bit RISC Microcontrollers [Online].

Available: http://www.nongnu.org/avr-libc/user-manual/index.html

17. J. Romkey, A Nonstandard for Transmission of IP Datagrams over Serial Lines: SLIP
(RFC1055), Network Working Group, June 1988.

18. AVR410: RC5 IR Remote Control Receiver Application Note (rev 1473B), Atmel, May

2002. Available:
http://www.at mel.com/dyn/resources/prod_documents/doc1473.pdf

19. Srdjan Capkun, Maher Hamdi, and Jean-Pierre Hubaux, GPS-free positioning in

mobile ad-hoc networks, Proceedings of the 34th Hawaii International Conference on
System Sciences, 2001.

20. Koen Langendoen and Niels Reijers, Distributed Localization Algorithms, Faculty of

Electrical Engineering, Mathematics & Computer Science, Delft University of
Technology, Netherlands, 2004.

21. Carlos de Morais Cordeiro and Dharma Prakash Agrawal, Ad Hoc & Sensor Networks:

Theory and Applications, World Scientific, 2006.

22. Georgios Sarigiannidis, Localization for Ad Hoc Wireless Sensor Networks,
Department of Applied Mathematics, Delft University of Technology, Netherlands,
August 2006.

23. Paul Bourke, Intersection of Two Circles, University of Western Australia, April 1997

[Online]. Available: http://local.wasp.uwa.edu.au/~pbourke/geometry/2circle/

24. Wireless Ad Hoc Networks, NIST: Advanced Network Technologies Division [Online].
Available: http://www.antd.nist.gov/wahn_home.shtml

25. <util/crc16.h>: CRC Computations, AVR Libc Reference [Online]. Available:

http://www.nongnu.org/avr-libc/user-manual/group__util__crc.html

26. Joseph Violi, ̧ Φ !ƘƳŜǘ ŜƪŜǊŎƛƻƐƭǳ, and Andrew Price, A Consensus Algorithm for
Improving Localization in Ad Hoc Networks with Infrared Channels (draft revs 916,
1076), Department of Electrical & Computer Systems Engineering, Monash
University, Australia, 2008.

27. WƻǎŜǇƘ ±ƛƻƭƛΣ ¸Φ !ƘƳŜǘ ŜƪŜǊŎƛƻƐƭǳΣ ŀƴŘ !ƴŘǊŜǿ tǊƛŎŜ, Channel Characteristics of

Inexpensive Infrared Transmitter-Receiver Pairs for Localisation (draft rev 838),
Department of Electrical & Computer Systems Engineering, Monash University,
Australia, 2008.

 50

28. MAX232, MAX232I DUAL EIA-232 Drivers/Receivers, Texas Instruments, March 2004.

Available: http://focus.ti.com/lit/ds/symlink/max232.pdf

29. 8-bit AVR Microcontroller with 128K Bytes In-System Programmable Flash (rev
2467R), ATmega128, ATmega128L, Atmel, June 2008. Available:
http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf

30. 8-bit AVR Microcontroller with 128K Bytes In-System Programmable Flash (rev

2545M), ATmega48/V, ATmega88/V, ATmega168/V, Atmel, September 2007.
Available: http://www.atmel.com/dyn/resources/prod_documents/doc2545.pdf

 51

Appendix A: Test Results

A.1 Bearing Test Results

Range 1m, Bearing 0°

Step Size: 2% 4% 6% 8% 10%

0.00 3.60 -2.81 0.00 5.63

-1.70 3.60 12.86 3.75 -5.62

0.83 0.00 0.00 3.75 0.00

3.53 0.00 6.00 3.46 0.00

0.00 1.73 -2.81 3.75 -5.62

0.00 0.00 2.81 0.00 0.00

1.73 8.18 7.16 0.00 5.63

1.73 1.73 6.00 0.00 5.63

3.60 0.00 7.16 0.00 5.63

1.70 0.00 0.00 8.18 -5.62

0.87 1.73 6.00 8.18 5.63

0.00 1.73 2.81 -3.75 5.63

4.50 0.00 6.00 3.75 5.63

0.85 3.60 7.16 0.00 5.63

1.76 7.83 7.16 3.75 5.63

0.00 1.73 2.81 3.75 5.63

3.53 1.73 -2.81 8.18 0.00

2.60 1.73 2.81 8.18 0.00

0.00 0.00 -2.81 -3.75 5.63

2.60 0.00 2.81 -3.75 -5.62

0.00 0.00 0.00 -3.75 5.63

-0.85 3.60 0.00 8.18 0.00

0.85 1.73 -2.81 8.18 -5.62

0.00 7.83 7.16 8.18 0.00

2.70 3.60 -2.81 3.75 0.00

1.70 7.83 6.00 8.18 -5.62

-2.60 0.00 6.00 0.00 0.00

3.60 1.73 6.00 3.75 5.63

-0.83 7.83 2.81 -8.18 0.00

0.00 0.00 7.16 8.18 0.00

0.85 3.60 2.81 0.00 5.63

-1.70 3.75 6.00 8.18 0.00

3.53 1.73 2.81 0.00 5.63

 52

0.83 3.60 6.00 3.75 5.63

5.63 3.60 2.81 8.18 5.63

0.83 0.00 0.00 3.75 5.63

-0.83 0.00 0.00 8.18 5.63

0.87 -1.73 0.00 8.18 5.63

0.00 1.73 2.81 3.75 5.63

1.70 -1.73 0.00 0.00 5.63

0.83 0.00 7.16 8.18 -5.62

0.00 1.73 0.00 8.18 0.00

1.73 -1.73 2.81 3.75 0.00

-0.83 1.73 2.81 8.18 5.63

0.00 -1.73 0.00 8.18 0.00

2.65 -1.73 2.81 8.18 0.00

6.56 1.73 0.00 8.18 0.00

0.85 0.00 0.00 0.00 5.63

0.83 0.00 7.16 3.75 -5.62

7.83 0.00 6.28 5.00 -6.59

Table A.1: Bearing test results for 1m range, 0° bearing.

Range 1m, Bearing 30°

Step Size: 2% 4% 6% 8% 10%

29.48 24.43 28.22 27.50 28.64

24.13 27.32 25.62 30.00 28.64

23.79 24.43 31.88 23.82 31.50

26.09 30.00 24.49 28.93 28.64

28.93 23.82 31.42 23.82 31.50

27.30 31.15 28.42 33.75 31.50

28.71 27.00 30.60 31.15 28.64

28.42 25.91 32.14 23.82 28.64

27.75 26.13 26.59 31.15 26.25

24.13 31.94 25.93 27.69 31.50

26.62 23.82 28.42 28.93 31.50

24.13 25.71 30.60 27.00 35.00

27.93 24.43 25.71 31.15 31.50

25.91 27.00 28.87 23.82 31.50

28.71 28.93 30.60 31.15 31.50

23.82 23.82 23.54 28.93 31.50

24.43 27.00 27.32 31.15 26.25

28.42 30.00 27.32 28.93 31.50

23.79 23.82 30.60 23.82 31.50

25.71 24.55 27.32 27.00 30.00

24.13 24.43 24.68 31.15 31.50

24.13 25.71 30.60 28.93 31.50

27.75 27.00 26.32 30.00 28.64

24.43 27.00 23.54 30.00 28.64

27.25 27.93 32.55 21.00 35.00

 53

28.03 30.00 29.73 31.15 28.64

30.00 29.03 31.42 30.00 28.64

25.31 28.50 27.32 30.79 31.50

23.16 28.93 28.87 23.82 26.25

30.26 27.93 23.54 28.93 28.64

24.49 25.91 31.42 28.93 27.00

28.22 25.71 30.60 31.15 28.64

24.49 28.50 27.32 23.82 28.64

32.86 30.00 26.85 28.93 31.50

29.48 30.00 28.22 27.69 35.00

24.43 28.50 28.87 31.15 28.64

26.13 28.33 30.60 33.75 31.50

23.82 23.82 29.73 23.82 31.50

27.54 30.00 28.87 33.00 35.00

26.56 27.50 31.42 31.15 28.64

31.03 23.82 29.73 28.93 28.64

28.98 25.71 28.87 31.15 28.64

26.87 24.43 31.42 33.75 28.64

24.43 23.82 28.87 28.93 28.64

23.79 23.18 29.73 22.50 28.64

24.43 28.50 29.73 22.50 31.50

24.08 25.31 29.73 31.15 28.64

27.42 32.88 31.42 25.31 33.75

27.75 28.93 29.73 23.82 31.50

29.19 28.42 30.27 28.93 29.72

Table A.2: Bearing test results for 1m range, 30° bearing.

Range 1m, Bearing 45°

Step Size: 2% 4% 6% 8% 10%

47.25 45.88 47.81 49.50 59.06

46.80 41.40 49.66 47.14 47.37

43.69 42.24 49.50 42.95 39.71

43.14 57.69 53.04 46.88 42.19

46.34 43.04 40.78 42.95 37.06

45.46 46.80 42.27 42.86 47.37

44.56 44.12 43.55 47.14 34.41

46.35 46.80 57.60 47.05 42.19

44.13 44.04 40.91 48.91 40.00

45.43 42.00 42.00 46.88 65.77

47.32 45.92 46.45 43.13 47.50

48.75 44.04 46.41 41.25 37.06

43.16 50.00 46.36 41.25 54.64

48.83 45.92 46.32 41.09 39.71

44.56 48.00 39.19 43.27 47.50

44.57 45.92 41.03 46.88 47.37

46.38 44.12 46.41 55.00 37.06

 54

46.78 44.10 43.55 39.13 42.19

46.32 46.80 43.64 46.88 42.50

45.89 47.93 43.55 43.13 39.71

47.25 46.88 49.50 51.14 54.64

44.57 45.92 46.41 40.71 42.50

45.89 45.92 43.59 56.25 56.25

45.90 45.92 34.14 43.20 42.50

47.32 44.12 43.68 43.20 51.92

45.90 47.76 42.00 66.00 47.25

44.13 46.88 46.41 54.47 42.50

45.44 39.13 57.12 47.14 39.71

44.10 46.88 39.00 66.00 42.75

48.75 41.25 39.00 43.13 40.26

46.78 46.00 41.90 50.87 40.00

45.90 46.80 41.79 66.18 39.71

46.88 46.80 42.00 55.00 57.00

46.34 47.76 38.57 41.40 47.37

46.78 45.92 40.91 47.05 42.75

46.82 43.04 40.34 43.13 39.71

46.36 47.87 46.32 43.04 39.71

43.13 45.92 46.50 40.71 54.64

45.46 49.00 40.50 40.50 39.71

47.32 47.87 39.19 43.20 47.37

46.34 45.92 45.00 56.25 42.19

45.90 45.92 46.41 48.91 42.50

46.34 46.80 49.50 47.05 47.25

45.88 42.24 46.50 45.00 51.92

45.44 47.76 39.00 46.96 39.71

46.78 46.91 46.41 47.05 47.50

45.91 46.80 40.91 43.13 42.19

46.82 43.09 40.91 49.29 42.50

46.32 43.20 46.41 41.25 39.71

40.91 42.00 46.91 54.51 45.00

Table A.3: Bearing test results for 1m range, 45° bearing.

Range 1m, Bearing 60°

Step Size: 2% 4% 6% 8% 10%

65.82 67.50 67.50 57.27 63.75

66.52 69.00 63.68 65.77 63.75

66.84 66.82 64.07 61.36 63.75

66.18 67.50 65.32 69.00 63.00

66.49 64.50 58.30 60.00 63.75

66.46 66.18 66.46 67.50 65.77

66.09 66.09 66.46 69.00 65.77

64.50 64.50 64.07 67.50 65.77

64.18 66.82 66.46 64.29 65.77

 55

65.77 66.82 61.13 66.00 65.77

66.49 66.82 64.07 58.50 56.25

66.18 65.32 65.09 60.00 61.36

66.84 66.82 55.23 61.36 65.77

66.49 66.09 63.68 62.31 63.00

66.84 66.18 66.46 69.00 56.25

66.84 60.58 66.46 66.18 65.77

64.18 66.82 66.46 64.29 63.75

66.46 66.82 66.46 67.50 61.36

65.71 63.62 68.54 62.31 63.75

66.36 65.32 62.68 64.29 55.00

66.46 59.40 66.46 60.00 65.77

66.46 66.09 66.46 65.77 63.75

66.14 66.82 66.36 67.50 60.00

64.07 67.50 67.50 64.29 67.50

66.49 66.82 64.07 64.29 63.75

66.49 64.29 65.32 66.18 65.77

66.84 66.82 66.46 67.50 65.77

66.84 66.09 66.46 67.50 58.50

67.17 66.82 64.07 67.50 63.75

66.52 66.82 66.46 69.00 58.50

66.84 66.82 52.68 64.29 55.00

66.49 66.82 64.07 62.31 65.77

66.49 64.50 67.50 60.00 65.77

65.00 64.50 66.46 65.77 63.75

66.49 63.62 66.46 69.00 67.50

66.14 66.82 66.46 69.00 56.25

65.77 66.09 66.46 66.18 65.77

63.75 66.09 66.46 63.00 63.00

66.14 66.82 59.40 64.29 63.00

65.32 66.09 63.68 66.00 63.75

67.87 66.82 65.09 65.77 63.75

65.71 59.40 65.32 62.31 58.50

66.82 65.45 66.46 67.50 65.45

66.49 65.32 66.46 64.29 65.77

66.14 67.50 64.07 67.50 63.75

67.16 66.82 64.07 67.50 65.77

66.49 66.09 66.46 67.50 65.45

66.84 66.82 67.50 67.50 65.77

66.09 65.17 68.64 67.50 60.28

64.50 68.57 64.50 66.49 65.77

Table A.4: Bearing test results for 1m range, 60° bearing.

Range 1m, Bearing 90°

Step Size: 2% 4% 6% 8% 10%

90.83 90.00 90.00 90.00 90.00

 56

90.00 91.80 87.00 90.00 95.63

91.88 91.80 92.81 90.00 90.00

90.00 100.59 96.43 93.75 90.00

91.10 91.80 90.00 93.75 95.63

90.00 91.73 93.00 93.75 90.00

90.00 90.00 91.67 90.00 84.38

90.00 91.88 90.00 98.18 90.00

91.41 90.00 84.00 90.00 90.00

92.76 93.46 105.00 93.75 84.38

90.00 88.20 90.00 93.75 95.63

91.80 88.27 93.00 93.75 90.00

90.00 79.41 96.43 93.75 90.00

90.00 91.80 90.00 90.00 90.00

90.00 90.00 90.00 86.25 95.63

90.00 90.00 90.00 90.00 90.00

91.71 90.00 90.00 90.00 90.00

90.00 88.27 87.00 79.41 84.38

90.00 90.00 87.19 90.00 90.00

89.17 88.20 92.81 90.00 84.38

89.17 91.80 87.00 93.75 84.38

90.00 90.00 90.00 98.18 90.00

90.00 90.00 93.00 90.00 95.63

90.63 90.00 92.81 98.18 90.00

89.17 90.00 93.00 90.00 95.63

90.83 88.20 90.00 93.75 84.38

89.15 90.00 90.00 81.82 95.63

80.36 90.00 92.81 90.00 90.00

91.55 90.00 87.19 81.82 84.38

90.00 90.00 90.00 90.00 90.00

90.00 91.80 90.00 93.75 90.00

90.83 88.20 90.00 90.00 95.63

90.00 88.20 96.00 90.00 90.00

90.00 88.20 90.00 90.00 90.00

90.00 91.80 96.43 86.25 90.00

91.10 91.73 90.00 90.00 90.00

88.24 90.00 90.00 90.00 90.00

91.70 90.00 90.00 86.25 90.00

90.85 90.00 92.81 93.75 90.00

90.00 95.63 90.00 90.00 84.38

101.09 90.00 90.00 90.00 95.63

90.83 100.59 93.00 93.75 95.63

90.00 100.29 96.00 90.00 73.64

91.70 90.00 92.81 86.25 90.00

101.74 90.00 90.00 93.75 95.63

89.15 90.00 90.00 90.00 90.00

90.00 91.80 90.00 100.59 95.63

 57

90.00 88.20 92.81 93.75 90.00

93.13 91.80 90.00 93.75 90.00

101.10 90.00 90.00 90.00 83.41

Table A.5: Bearing test results for 1m range, 90° bearing.

Range 1m, Bearing 135°

Step Size: 2% 4% 6% 8% 10%

135.54 135.00 135.00 128.86 138.21

131.04 133.16 138.00 128.86 140.29

135.00 133.85 133.59 133.13 137.81

135.00 139.09 132.27 137.50 140.29

131.09 129.77 136.73 135.00 140.29

131.21 137.93 136.73 137.05 151.36

132.26 134.10 130.50 132.50 143.44

130.11 130.91 139.50 131.09 140.29

136.07 130.00 138.60 133.13 140.29

131.82 130.91 130.50 139.29 140.29

136.11 130.11 125.69 135.00 140.29

134.02 136.96 136.73 132.50 140.29

129.62 131.93 136.73 128.86 137.50

138.18 135.00 136.73 132.95 153.75

133.31 130.00 141.21 132.95 155.77

139.24 135.94 138.00 141.14 135.00

130.60 134.08 135.00 135.00 140.29

137.07 139.00 129.19 135.00 155.77

129.07 139.09 132.27 131.09 135.00

132.80 129.00 133.27 137.25 129.71

136.06 134.08 135.00 131.09 155.77

132.38 130.31 139.50 151.07 135.00

131.90 139.09 141.21 130.71 143.44

134.55 132.30 128.79 133.13 140.29

130.16 134.10 129.19 123.75 140.29

133.94 141.43 132.27 139.29 148.50

135.00 139.19 131.40 142.50 151.36

130.74 139.09 138.10 139.29 140.29

132.83 131.86 139.50 137.05 135.00

135.55 133.13 133.59 128.86 140.29

135.95 133.24 133.55 135.00 140.29

137.02 132.07 132.27 133.13 140.29

136.59 133.90 130.50 142.50 135.00

135.48 132.00 135.00 131.09 140.29

134.42 138.00 135.00 135.00 155.77

138.50 139.19 139.50 128.86 129.71

133.94 134.08 138.10 135.00 155.77

136.08 130.31 141.21 141.75 155.77

132.98 136.10 130.50 137.81 140.29

 58

138.58 134.08 127.50 153.00 137.50

131.13 131.09 132.27 128.86 140.29

129.50 139.09 139.50 133.13 135.00

133.14 135.00 130.50 137.50 135.00

138.58 129.77 141.21 135.00 129.71

135.54 135.00 143.04 133.13 143.44

132.47 135.00 136.73 135.00 143.44

132.47 133.98 138.60 128.86 137.81

139.00 136.96 132.27 132.50 140.29

134.44 128.15 135.00 135.00 132.19

131.09 141.43 141.35 140.63 139.15

Table A.6: Bearing test results for 1m range, 135° bearing.

 59

Appendix B: Mathematical Work

B.1 Equation 4.16 Proof

Proof of equation 4.16:
2 2 2

2

C B C A A B
P B

A B

- - - + -
- =

-

2 2 2

2

C B C A A B
RHS

A B

- - - + -
=

-

Substitute equations 4.13 & 4.14:

2 2 2

2

P B P A A B
RHS

A B

- - - + -
=

-

Substitute equation 4.15:

()
22 2

2

P B P A P A P B
RHS

A B

- - - + - + -
=

-

2
2 2

2

P B P A P B
RHS

A B

- + - -
=

-

()P B P A P B
RHS

A B

- - + -
=

-

Substitute equation 4.15:

P B A B
RHS

A B

- -
=

-

RHS P B= -

LHS=

Q.E.D

 60

Appendix C: Testbed Supplement

The following appendix provides the circuit diagrams and parts required to produce the non
mobile Sens-r nodes used in this project. Component lists for additional electronics used are
also supplied.

C.1 Sens-r Components List

Qty/
Node

Value Supplier Part No. Description

Mainboard
1 Monash Uni Mainboard PCB
1 Futurlec ATMEGA128-16AC ATmega 128 128kB MCU (64 TQFP)
1 Futurlec L293D L293D Motor Drive IC
1 16MHz Altronics V2289 (1x10 pack) 16 MHz HC49SM Surface Mount Crystal
8 Altronics Y1041 (1x10 pack) LED 1206 Red
8 430 Altronics R1049 (1x10 pack) Surface Mount Resistor
1 10k Altronics R8188 (1x10 pack) Surface Mount Resistor
3 2k Altronics R8137 (1x10 pack) Surface Mount Resistor
1 4k7 Through Hole Resistor
1 Jaycar SM1020 4 Way Dil Switch
1 Altronics S1120 PCB Mount SPST Momentary Pushbutton

Switch
2 22pF Altronics R9836 (1x10 pack) Surface Mount Capacitor
5 0.1uF Altronics R8835 (1x10 pack) Surface Mount Capacitor
1 10uF Altronics R4768 Polarised Capacitor
1 Altronics Y0908 MC78M05CD2T (D2PAK) 3-Terminal 0.5A

Positive Voltage Regulator
1 Altronics P5513 3 Way 90 degree PCB Mount Pin Header
2 Altronics P5514 4 Way 90 degree PCB Mount Pin Header
1 Altronics P5515 5 Way 90 degree PCB Mount Pin Header
1 Altronics P5420 40 Way 90 degree Dual Row Pin (5 way

required)
1 Altronics P5410 40 Way Dual Row Pin (11 way required)
1 Pin Jumper
1 Altronics P5430 40 Way PCB Pin (9 pins required)
Communications Board
1 Monash Uni Communications Board PCB
1 Futurlec ATMEGA168V-10PI ATmega168 (PDIP) + Chip Socket
1 10MHz Altronics V1259 10 MHz Low Profile HC49 Crystal
3 0.1uF Altronics R2930A Capacitor
2 22pF Altronics R2814 Capacitor
4 Altronics BC547 NPN Transistor
5 Altronics BC557 PNP Transistor
11 2k2 Through Hole Resistor
4 560 Through Hole Resistor
1 3k3 Through Hole Resistor
1 4k7 Through Hole Resistor
1 Altronics S1120 PCB Mount SPST Momentary Pushbutton

Switch

 61

8 Altronics Z1611 BRM-1030 IR Rx Module
16 Jaycar ZD1945 5mm IR LED
1 RS LM317MDT/NOPB 500 mA Adjustable Output Positive Voltage

Regulator
1 Altronics P5410 40 Way Dual Row Pin (5 way required)
1 Altronics P5400 40 Pin PCB Pin Socket (need 10 pins)
Other
1 Monash Uni 5 Pin PCB Cable with Female Plug
1 Monash Uni 9V Power Supply or 9V Battery Connector

& 3 Pin Female PCB Plug
3 Altronics H1320 (1x10 pack) 5 x 12mm Round Nylon Spacer
3 Altronics H3150A (1x10 pack) M3 x 25mm Pan Pozi Nickel Bolt
3 Altronics H1345 (1x8 pack) 8mm Nylon Tapped Spacer

*Note: Motor, wheels, encoders not included as non mobile.

Table C.1: Non mobile Sens-r node complete components list.

C.2 Sens-r Circuit Diagrams

The following circuit diagrams are updated versions of those available at TWiki.WSensornets
[2].

Figure C.1: Mainboard circuit diagram: Microcontroller.

