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Summary 

The following is a project report for a final year thesis project entitled Localisation in Ad Hoc 
Networks using Infrared Channels.  
 
Infrared is emerging as a leading candidate for providing secure gigabit indoor 
communications such as high speed internet to portable devices, and localisation would 
form an important part of such systems, increasing throughput through directional routing 
and preventing interference between devices. 
 
The aims of this project were to implement an iterative localisation algorithm for infrared ad 
hoc networks, test its performance on a real world testbed of infrared wireless nodes and 
make recommendations as to improvements. The algorithm presented uses a novel 
approach to weighing position estimates in order to mitigate the effects of error 
propagation. 
 
Key outcomes include the successful fabrication of a small testbed of nodes, and the 
implementation of the localisation algorithm in code. The localisation code was found to 
calculate bearings with reasonable accuracy. Position estimation was shown through 
simulation to work on successful packet reception, however due to packet collisions there 
were problems in achieving it on the testbed. 
 
This report provides a background on localisation in wireless ad hoc networks, details 
regarding the fabrication and operation of the infrared testbed, an examination of the 
localisation algorithm and a walkthrough of the code produced. Results of tests and 
recommendations as to future work are also provided. 
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Glossary 

AHDWL Anchor Hop Distance Weighted Localisation 

CRC Cyclic Redundancy Check 

DA Destination Address 

EWMA Exponential Weighted Moving Average 

GCC GNU C Compiler 

GNU Db¦Ωǎ bƻǘ ¦bL· όh{ύ 

GPS Global Positioning System 

IC Integrated Circuit 

IDE Integrated Development Environment 

IR Infrared 

IRQ Interrupt Request 

ISP In System Programmer 

ISR Interrupt Service Routine 

JTAG Joint Test Action Group 

LED Light Emitting Diode 

LSB Least Significant Bit 

MAC Media Access Control 

MANET Mobile Ad Hoc Network 

MSB Most Significant Bit 

MUTEX Mutual Exclusion Semaphore 

NAV Network Allocation Vector 

OS Operating System 

PC Personal Computer 

PCB Printed Circuit Board 

PWM Pulse Width Modulation 

RAM Random Access Memory 

RF Radio Frequency 

RSS Received Signal Strength 

RSSI Received Signal Strength Indicator 

RTOS Real Time Operating System 

Rx Receiver 

SA Source Address 

SLIP Serial Line Internet Protocol 

SRAM Static RAM 

TTL Transistor-Transistor Logic, Time to Live 

Tx Transmitter 

UART Universal Asynchronous Receiver/Transmitter 

USART Universal Serial Asynchronous Receiver/Transmitter 

USB Universal Serial Bus 

WSN Wireless Sensor Network 
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1. Introduction 

1.1 Background & Motivation 

Whilst in the past relegated to low data rate applications, infrared and visible light systems 
are now being looked at as a way of providing high speed wireless indoor communications. 
In such a system the apparent shortcomings of infrared; being short range and requiring line 
of sight would provide protection from eavesdropping and interference whilst the high 
directionality of IR transmitters could be utilised to increase throughput. Infrared is also a 
viable means of communication in aquatic environments, as clean water provides relatively 
low attenuation of infrared light. 
 
Indoor mobile ad hoc networks (MANETs), like teams of cleaning robots or wireless sensor 
networks (WSNs) such as surveillance camera systems, could also employ infrared 
communications. In many such networks localisation is required to allow nodes to 
determine their positions (either relative to each other or absolutely). High level 
applications often require at least relative localisation information in order to perform tasks. 
The focus of this project is the implementation of a localisation scheme which reduces the 
error accumulation that occurs in other iterative localisation methods. 

1.2 Objectives 

The main aim of this project was to implement and test the performance of the localisation 
algorithm for infrared ad hoc networks outlined in the paper Incorporating Multiple 
Estimates for Accurate Localization in Infrared Ad Hoc Networks [1]. The algorithm takes an 
anchor hop count based approach to weighting position estimates in order to reduce the 
effects of error propagation found in iterative localisation schemes. Localisation code was 
written and tested on a testbed made up of non mobile Sens-r infrared nodes [2] which 
were built as part of the project. Based on these tests, an assessment of the algorithm and 
recommendations were made. 
 
The localisation scheme outlined in this report is unique in two ways, firstly in the way 
position estimates are calculated without the need for signal strength indicators and 
secondly in the way position estimates are combined to reduce error caused by error 
propagation over multiple hops.  
 
This project aims to further contribute to research in the areas of localisation and optical ad 
hoc networks. It builds upon the work done in the paper Incorporating Multiple Estimates 
for Accurate Localization in Infrared Ad Hoc Networks by moving from a simulated to a real 
world test platform, and provides an evaluation of the scheme with recommendations as to 
improvements. 
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1.3 Report Overview 

The report first gives a background in section 2 on wireless ad hoc networks, infrared 
communications and localisation techniques. Details regarding the fabrication and operation 
of the Sens-r infrared testbed are given in section 3 (with schematics and component lists 
provided in Appendix C). The localisation scheme including bearing estimation, position 
estimation and the weighting algorithm is covered in section 4, whilst the actual code 
produced for the testbed is examined in detail in section 5 (and provided in Appendix D). 
Results of testing and an evaluation of system performance are provided in section 6, 
followed by conclusions and recommendations in section 7. Any questions or clarifications 
about this report are welcomed by the author. 
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2. Background 

2.1 Wireless Ad Hoc Networks 

A wireless ad hoc network is a system of autonomous nodes which form a decentralised 
communications network. Wireless communication allows for a dynamic network topology 
where new nodes can be rapidly introduced and likewise rapidly removed. Nodes act as 
both host and router, performing tasks and forwarding messages to each other. For 
example, mobile nodes can form dynamic networks where they are linked with their nearest 
neighbours; nodes which move too far from their neighbours might lose connection but 
then come into contact with other nodes and begin talking, changing the network topology.  
 
There is a need then for ad hoc networks to be able to adapt quickly to change. This requires 
efficient routing protocols so nodes can communicate new information over multi-hop 
paths consisting of possibly several links. The use of wireless communication also requires 
nodes to cope with noise and interference as well as sharing limited bandwidth. 
 
There are two major types of wireless ad hoc networks; smart wireless sensor networks 
(WSNs) and mobile ad hoc networks (MANETs), both of which have great potential to 
perform tasks cooperatively in unpredictable environments. A wireless ad hoc sensor 
network consists of several (typically stationary) sensor nodes spread across a geographical 
area which can be used to take measurements, detect events of interest, and even classify 
and track objects. In a military sensor network it could be possible to detect an enemy tank, 
classify it, measure its speed and track it across the network. MANETs are ad hoc networks 
with mobile nodes. There are several diverse applications for MANETs, one being to 
establish efficient, robust lines of communication in disaster or military situations. The 
ability to configure and deploy nodes quickly make ad hoc networks suitable for such 
scenarios.  
 
Robotic swarms are another area in which wireless ad hoc networking can be applied. In all 
of these applications ad hoc networks are required to be self organising, robust and energy 
efficient as well as of low cost and minimal complexity. 

2.2 Infrared Communications 

Infrared (IR) communications have traditionally been used in indoor, short range, low data 
rate applications such as in communications between computer peripherals and remote 
control of home devices. Messages are transmitted by encoding a modulated signal and 
emitting it via an IR LED. The LED focuses this into a narrow IR beam providing high 
directionality. Line of sight between the transmitter and receiver is required for messages to 
be received.  
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Whilst this line of sight requirement might first be seen as a disadvantage, it can be used to 
prevent eavesdropping as well as outside interference, providing increased security and 
reliability. It also allows for independent networks to be placed in adjacent areas without 
interference (provided no line of sight between them). A similar set up using RF wireless 
networks would require different operational frequencies and would still be susceptible to 
eavesdropping from the outside. IR also has the advantage of being low cost by employing 
relatively cheap components. 
 
Whilst previously limited to low data rate applications, infrared and visible spectrum 
communication systems are now being researched as a means to provide high speed indoor 
communications, such as high speed internet to portable devices. In addition to preventing 
eavesdropping, the high directionality provided by IR reduces interference between nodes 
and can increase network capacity by allowing multiple packets to be transmitted 
simultaneously. Energy consumption would also be reduced by directing transmission 
power only at the desired recipients.  
 
Several optical wireless ad hoc networks have been developed at research institutions 
around the world (for example Pushpin nodes [3] and Moorebots [4]) especially in the area 
of indoor ad hoc networks. An application of such networks could be a team of indoor 
vacuums that can communicate to effectively coordinate the cleaning of large areas. Optical 
wireless ad hoc networks could also be used in aquatic environments as clean water 
provides a relatively low attenuation medium for near visible and visible light. In fact, Festo 
have developed an underwater robot called the AquaJelly [5], which swims like a jellyfish 
and communicates via infrared channels.  
 

 
Figure 2.1: The Festo AquaJelly communicates underwater via an arrangement of 11 IR LEDs. 

2.3 Localisation in Wireless Ad Hoc Networks 

Many applications in ad hoc networks require localisation to determine node positions 
(either relative to each other or absolutely). Many higher layer applications require at least 
relative localisation information to perform tasks such as geographical routing, location 
based addressing and sensor mapping. In the case of MANETs localisation information is 
particularly critical as nodes must be able to determine their locations and that of their 
neighbours to effectively interact with each other and coordinate tasks.  
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Figure 2.2: A wide range of higher layer applications depend on localisation information. 

An obvious way to achieve localisation would be to use existing infrastructure such as GPS, 
but in a network of multiple nodes such a solution would increase node complexity and 
costs as well as reducing lifespan. Also such a system would be limited to the infrastructure 
that supports it, for example GPS is often only accurate for outdoors with clear weather. A 
more autonomous approach is for nodes to determine their positions from their immediate 
neighbours, forming a distributed localisation network which has the added advantage of 
energy efficiency. 
 
There are two families of localisation techniques for wireless ad hoc networks. Namely, 
range based techniques in which nodes measure distances or angles to other reference 
nodes to determine their position and range free techniques where nodes are not required 
to do so, relying on connectivity information to determine node positions. Infrared 
communications are suitable for range based localisation as angles can be readily calculated 
due to the high directionality of IR transceivers. 
 
The procedure for range based localisation can be broken into three stages. Firstly nodes 
must determine their distances and bearings to other reference nodes. Then using this 
information, by geometric principles (triangulation for example), a position estimate can be 
calculated. A localisation algorithm is used to determine how position estimates are shared 
and combined to produce accurate localisation across the network. 
 
Often in an ad hoc network a small number of nodes will know their absolute position 
exactly, being either pre-programmed and stationary or having access to outside localisation 
means such as GPS. These nodes are commonly referred to as anchor nodes, acting as fixed 
known points in the network. In many ad hoc localisation schemes, nodes adjacent to the 
anchor nodes can determine their positions, and following this their neighbours can do 
likewise. In this way localisation information can propagate through the network over time 
(iterative localisation). The goal of such schemes is to allow nodes with unknown locations 
to make accurate, stable and quickly converging position estimates. A problem with iterative 
schemes is the potential accumulation of errors at each hop away from the anchor nodes, 
which can render position estimates unreliable in large networks. 
 
The localisation method implemented in this project is unique in two ways. First, explicit 
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RSSI information is not required to determine distances between nodes; nodes only need to 
take bearing measurements. This is done via the circular transmitter and receiver arrays on 
the Sens-r infrared nodes which form the testbed for the project. Second, an anchor hop 
distance weighting localisation (AHDWL) algorithm is applied to mitigate the effects of error 
propagation that occur the further a node is from an anchor node. 
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3. Sens-r Testbed 

This section provides details regarding the construction and operation of the testbed used in 
this project. Component lists and Sens-r circuit diagrams are provided in Appendix C. 

3.1 Overview 

The Sens-r node was designed as a low cost node to do angle based infrared localisation. 
Each node consists of two circuit boards; the communications board which allows nodes to 
communicate via infrared links and the mainboard which is designed to perform higher level 
application tasks (in this case localisation).  
 

 

Figure 3.1 Non mobile Sens-r node top view. 

Both boards are driven by Atmel 8-bit AVR microcontrollers which provide a range of useful 
on-chip functions such as timer-counters, pulse width modulation (PWM) outputs, analog to 
digital conversion (ADC), serial (USART) communications and pin interrupts. There is a well 
maintained open source development toolkit [6] based on the GNU C Complier and a very 
active online support community [7] for AVR devices. The number of processors in the AVR 
family means that projects can be readily upgraded to use more capable chips without 
significant changes to the project code. 
 
The communications board consists of a circular arrangement of sixteen directional IR LEDs 
and eight BRM-1030 infrared receivers [8], controlled by an ATmega168 microcontroller. 
The board works in the physical and data link layers, providing infrared links between nodes 
and passing packets via USART to the mainboard which performs higher level functions. 
Commands are likewise received from the mainboard via USART.  
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Figure 3.2: Components of the communications subsystem. 

The infrared transmitter LEDs are arranged in a circular layout and wired up in a 4 × 4 
matrix, which is fed a 38 kHz supply signal (PWM_IR) in order to modulate transmissions 
(the BRM-1030 receivers require a 38 kHz carrier frequency to decode signals). The LEDs are 
wired such that the horizontal rails form quadrants (A, B, C & D), and the vertical rails 
ground paths for the LEDs in those quadrants (W, X, Y & Z). The horizontal rails & LED 
voltage supply are controlled by PNP transistors (requiring inverted logic signals) and the 
vertical rails by NPN transistors connected to ground. 

 

 

a) Component layout. 

 
 

 
b) Switching logic.

Figure 3.3: Communications ǎǳōǎȅǎǘŜƳΩǎ IR transmitter configuration. 

In order to ensure transmitter power remains consistent it is a requirement that only one 
ground transmitter can be set at a time. This allows for up to four independent messages to 
be transmitted simultaneously, spaced 90° apart, at the same transmission power, and also 
ensures that adjacent transmitters do not interfere with each other. The localisation scheme 
in this project requires adjustable control of transmission power; this is done by using a 
variable voltage regulator where output voltage is controlled by a PWM signal (PWM_V) 
from the ATmega168. Increasing the duty cycle of this signal increases the voltage output 
(incidentally the transistors will not switch for an output voltage of much greater than 5V, 
which corresponded to a duty cycle of around 80% in the testbed setup). This voltage is run 
through a series resistor & LED combination, and as only one ground transistor can be set, 
the result is a linear relationship between current and supply voltage. Given a constant 
voltage drop across the LED this means transmission power is directly proportional to duty 
cycle of the signal PWM_V. 
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Messages can be received simultaneously on each of the eight infrared receivers. As 
mentioned earlier, the BRM-1030 receiver modules only detect signals modulated at around 
38 kHz. This helps to eliminate interference from other infrared sources such as the sun, 
although some outside sources might also be modulated (fluorescent lighting for example). 
¢ƘŜ ǊŜŎŜƛǾŜǊ ƳƻŘǳƭŜΩǎ ƛŘƭŜ ǎǘŀǘŜ ƛǎ ƭƻƎƛŎ Ƙƛ όр± ƛƴ ǘƘƛǎ ŎŀǎŜύΣ ƳŜŀƴƛƴƎ ǊŜŎŜƛǾŜŘ ƳŜǎǎŀƎŜǎ ǿƛƭƭ 
be inverted (which needs to be accounted for when decoding). 
 
The mainboard is powered by an ATmega128 microcontroller which consists of more 
features and significantly more memory than the ATmega168. In this project the mainboard 
is used to maintain tables regarding immediate neighbours, do localisation calculations, 
send commands to the communications board as well as act on packets received and output 
data to a PC. The board employs ǘƘŜ aƛŎǊǳƳ ˃/κh{-II RTOS [9] to manage processor usage 
across multiple tasks (whereas the communications board is run by interrupt driven C code). 
 
In terms of chip IO, two serial UARTs are used for communications, four general IO pins are 
used as inputs from a DIL switch and a further eight used as outputs to some LEDs for 
debugging purposes. Also, whilst not utilised in this project the mainboard provides an ADC, 
an eight pin GPIO port, control circuitry for an external motor and IO for optical wheel 
encoders. This is a scalable board which allows for Sens-r nodes to be used in research 
requiring mobile nodes, and even allows for swapping infrared with other communications 
systems such as wireless [10]. 
 

 

Figure 3.4: Components of the main processing subsystem utilised in this project. 

Serial communications are done relatively simply between the mainboard and 
communications board as both ATmega chips provide onboard USART functions based on 
transistor-transistor logic. To communicate with a PC however, requires RS232 compliant 
logic levels which transistor-transistor logic does not provide. So a RS232 to TTL circuit (see 
figure 3.5) was made as part of the testbed. Messages from the mainboard could then be 
received at the PC by using a serial port terminal (HyperTerminal was used in this project). 

 

Figure 3.5: RS232 to TTL converter circuit used for sending messages to PC. 
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The AVR Studio 4 IDE [11] was used to simulate the chips and to program two boards via 
JTAG port using an AVR ISP MkII (sourced from Soanar). The programmer comes with a 6 pin 
plug, and so required making up a 6 pin ISP to 10 pin JTAG crossover cable like that in figure 
3.6 below. 
 

 

Figure 3.6: 10 pin JTAG to 6 pin ISP cable used for programming. 

3.2 Fabrication 

One of the key outcomes of this project was a testbed of five non mobile Sens-r nodes to 
provide a real world test platform for the localisation scheme. The Sens-r circuit boards are 
two layer milled PCBs, the mainboard rectangular (80×60mm) and the communications 
board circular (ͺулƳƳύ. A two dimensional PCB milling machine was used to mill away 
copper foil from the top and bottom layers, leaving the desired copper tracks separate from 
the rest of the board. Vias and through holes were drilled to allow connections to be made 
between the top and bottom layers. 
 
The mainboard consists of a large number of surface mount components including resistors, 
capacitors, LEDs and the ATmega128. Pin connectors, the reset switch and the motor drive 
IC were through hole soldered. 
 

 

Figure 3.7: Sens-r mainboard. 

All components on the communications board (with the exception of the voltage regulator) 
were through hole components. The sheer number of components and via holes made 
soldering the communications boards quite a challenge (see figure 3.8b). 
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a) Top view. 

 

b) Bottom view. 

Figure 3.8: Sens-r communications board. 

The following changes were made from the Sens-r original schematics (which are given in 
Appendix C.2). On the mainboard L293D ICs were used instead of L293 ICs, making the 
diodes specified for motor control in the original circuit diagrams redundant. Also all unused 
IO such as the ADC and GPIO ports were not given pin connectors. On the communications 
board an additional decoupling capacitor was soldered across the ATmega168Ωǎ vcc and 
ground input pins. Also, the original PCB layout had a track which was not able to be milled, 
which was fixed by soldering a new path using low gauge wire. 

3.3 Issues & Recommendations 

Construction was made difficult by the use of milled copper PCBs, as a significant amount of 
effort was required to ensure that the milled tracks would not short circuit with the board at 
soldered junctures. The amount of through holes and vias required, particularly for the 
communications board, made this a significant problem. Another difficulty was the 
oxidation of the copper over time due to handling, this made soldering more difficult (later 
found to be improved by sanding with emery paper). The performance of the Sens-r nodes 
was adequate, although sometimes unreliable due to the quality of the circuit boards. 
 
Debugging and testing of code on the nodes was quite a slow process, as WinAVR does not 
come with supǇƻǊǘ ŦƻǊ ˃/κh{-II. Code would first have to be compiled to satisfy AVR and C 
code requirements, then uploaded to the Sens-r mainboard and then during program 
execution error messages specifically added to the code would be output via USART to the 
PC terminal. This process would then be repeated until successful execution was achieved, 
making debugging a tortuous process. There were also many occasions when code would 
stop working and produce inexplicable results due to a lack of program memory, although 
later in the course of the project significant savings in data memory were achieved to 
prevent this. 
 
In order to create a large network, it would be wise to alter the node design to a single 
communications board with a USB port. Higher level tasks could be done via PC by 
simulating the role of the mainboard, without worrying about lack of memory (which was a 
major concern in writing code for this project). Multiple nodes could be controlled by a USB 
hub and data from each recorded, providing a complete account of the state of nodes in the 
network over time. Most importantly the time taken to perform debugging would be 
significantly reduced. 
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4. Sens-r Based Localisation 

The localisation algorithm in the paper Incorporating Multiple Estimates for Accurate 
Localization in Infrared Ad Hoc Networks [1] forms the basis of the scheme presented in this 
section, with some modifications. In this scheme nodes form a distributed ad hoc network, 
sharing localisation information (position and bearing data) with their immediate Ψм ƘƻǇΩ 
neighbours. Relative bearing estimation forms the basis of this range based localisation 
scheme. 
 
The scheme requires a small number of nodes in the network to know their positions 
absolutely (at least two anchor nodes are required to allow initial position estimates to be 
made). Once initial estimates have been made other nodes not adjacent to the anchors can 
make position estimates, followed then by their neighbours. The iterative localisation 
scheme presented here makes use of an anchor hop distance weighted localisation 
(AHDWL) algorithm to weigh position estimates based on node hop count from anchors in 
order to reduce the effects of error accumulation from the anchors. 
 
Localisation can be broken down into three stages. First, nodes determine bearings to their 
immediate neighbours. Then, once they have obtained bearing and position data from other 
nodes they are able to calculate a position estimate via intersection of circles, new 
information received is used to form new position estimates. Finally, position estimates are 
combined using the AHDWL algorithm ƛƴ ƻǊŘŜǊ ǘƻ ŀŎŎǳǊŀǘŜƭȅ ŘŜǘŜǊƳƛƴŜ ŀ ƴƻŘŜΩǎ ŎǳǊǊŜƴǘ 
position 
 
The localisation scheme implemented in this project is unique in two ways. First, explicit 
RSSI information is not required to determine angles or distances between nodes. Bearing 
measurements are taken from sequences of messages sent over a range of power levels, via 
the circular transmitter/receiver arrays on the Sens-r nodes which form the testbed for the 
project. Second, anchor hop distance is used as a measure to weight and combine position 
estimates in order to reduce error propagation across the network. 

4.1 Bearing Calculation 

The BRM-1030 receiver module is a low cost IR receiver, used in typical low data rate 
applications such as remote controls. It is an integrated package which buffers the received 
signal through amplifier, band pass filter (centred at 38 kHz), integrator and comparator 
stages to obtain a digital signal. It is not possible to measure the properties of the original 
signal with such a device, particularly received signal strength (RSS), having passed the signal 
through this multistage system.  
 
The characteristics of the BRM-1030 however allow for channel connectivity to be used as 
an indirect measure of RSS. Previous testing [12] found that for a series of transmitted 
pulses the device will either receive almost all pulses or none at all, a brick wall where the 
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device is either connected or not. There was also shown to be a clear relationship between 
transmission power, transmitter and receiver angles. Connection quality reduces for greater 
angle between the transmitter and receiver, thus requiring greater transmission power for a 
packet to be detected (or a reduced distance between them). This finding combined with 
the arrangement of the communications board can be used to do ŀ ǎƻǊǘ ƻŦ Ψindirect 
measurementΩ of RSS, utilising transmission power to calculate bearings. 
 
The method is similar to IƻȅǘΣ aŎYŜƴƴƻŎƘ ŀƴŘ .ǳǎƘƴŜƭƭΩǎ approach [13], where the centroid 
of the received signals is calculated by taking their power levels into account. However, their 
approach involves taking explicit RSS measurements at the receivers of a signal transmitted 
at constant power. In this method, rather than take RSS measurements of a constant power 
signal, a sequence of ΨƘŜƭƭƻΩ packets at increasing transmission power is sent in all directions 
and cƻƴƴŜŎǘƛǾƛǘȅ ƻŦ ǘƘŜ ǊŜŎŜƛǾŜǊǎ ǳǎŜŘ ǘƻ ŘŜǘŜǊƳƛƴŜ ǘƘŜ ƴŜƛƎƘōƻǳǊΩǎ ōŜŀǊƛƴƎ όǊŜƭŀǘƛǾŜ ǘƻ ŀƴ 
arbitrary 0° bearing) as follows: 
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(4.1) 

where,  ijf= bearing of node j relative to node i 

 N = total number of receivers which received a message from node j 
 Pmax = maximum power level at which a messages in the hello sequence are 

transmitted 
 Pn = minimum transmission power at which a message was received on Rxn 

 nj  = local bearing of receiver relative to 0° bearing 

 
The centroid of the received sequence is found by recording the lowest transmission power 
of the received packets for each receiver (transmission power is encoded in the packet), and 
giving greater weighting to those receivers that received packets at lowest power. The 
distance between nodes is not critical as the circular arrangement of the transmitter and 
receiver arrays means symmetric pairs will form, effectively cancelling each other out in the 
above equation (4.1). 
 
There are two ways in which bearings can be estimated using this technique. The first is 
passive reception of the packet sequence, where the lowest transmission power packet 
correctly decoded on each receiver is recorded and put into equation 4.1 above to obtain a 
bearing estimate. The second method is active reception, where nodes that receive hello 
packets send hello reply packets back to the transmitting nodes (where the estimate is 
made) indicating what packets have been received and from which transmitter diode. This 
would provide for more accurate estimates given that the Sens-r node has double the 
number of transmitters as receivers, but the transmission of reply messages from several 
nodes would require quite sophisticated media access control (MAC) in order to prevent 
collisions. On the other hand, passive reception at the receiver does not require replies to 
be sent, reducing the likelihood of collisions and can determine its bearing by simply 
listening for hello packets. 
 
In this project passive bearing estimation was used. Note that while MAC is not required to 
prevent collisions between hello reply messages, it is still needed to prevent collisions 
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between hello packet sequences. It was found during testing that sequences transmitting 
simultaneously can corrupt the hello packets such that they are not decoded correctly, 
which can cause bearing estimations to become very inaccurate. 
 
To reduce variation in bearing estimates a simple moving average filter can also be applied 
to local bearing calculations going back a number of estimates. Doing so, whilst reducing 
variation, would also reduce the responsiveness of the localisation scheme to moving nodes. 
The effects of implementing both moving average and median filters to bearing calculations 
are investigated in section 6.1. 
 
It was discovered that there was a problem using the bearing calculation method outlined 
so far for hello packets received about the 0° bearing. Consider the following example; 
packets are received at the local 0°, 45° & 315° bearing receivers (note all angles in 
localisation are taken clockwise) with minimum transmission powers (duty cycle) of 8, 40 & 
32 respectively. Given a maximum transmission power of 80 the bearing is found as follows: 
 

( ) ( )

( ) ( )

80 8 0 (80 40) 45 80 32 315

80 8 (80 40) 80 32
ijf

- ³ + - ³ + - ³
=

- + - + -
 

(4.2) 
16920

105.75
160

ijf= =  

(4.3) 
 

Clearly there is a problem, as the actual result should be around 0°. In this case a valid 
solution is obtained by using -45° instead of 315° in equation 4.2, the two symmetric 
bearings will then average to around 0° rather than 180° resulting in a bearing of -2.25° or 
357.75°. However, if one tries to use a bearing range of (-180°, 180°] a similar problem will 
occur about 180°. 
 
The following method was devised to obtain an accurate solution across the full bearing 
range. After a full hello packet sequence has been received, the receiver which successfully 
received a packet at the lowest (non zero) transmission power has its local bearing recorded 
and is assigned temporarily as the 0° bearing. The other receivers are then designated 
clockwise from the 0° receiver as 45°, 90°, 135°, 180°, -135°, -90° and -45°. Using these 
ŘŜǎƛƎƴŀǘŜŘ ōŜŀǊƛƴƎǎ ŀ ΨŘŜƭǘŀΩ ōŜŀǊƛƴƎ ŜǎǘƛƳŀǘŜ Ŏŀƴ ōŜ ƳŀŘŜΣ ǿƘƛŎƘ ǊŜǇǊŜǎŜƴǘǎ ǘƘŜ ōŜŀǊƛƴƎ 
from the closest receiver (equation 4.4). Adding this delta bearing to the recorded local 
bearing yields the actual bearing estimate (equation 4.6). 
 
Consider the following example where a transmitter node is at a bearing of 130° to the 
receiver. Maximum transmission power is again at 80% duty. 
 

Rx ID Tx Power (D%) Local Bearing Assigned Bearing (űn* )  

0 - 0° -135° 

1 - 45° -90° 

2 26 90° -45° 

3 21 135° 0° 

4 38 180° 45° 

5 - 225° 90° 

6 - 270° 135° 
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7 - 315° 180° 

Table 4.1: Sample bearing calculation data. 

The 135° local receiver is designated temporarily as the 0° bearing (and recorded as ű0°). The 
other receivers are assigned bearings in sequence (űn* ). From this table the delta and final 
bearings are calculated as follows: 
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(4.5) 

0
f f j=D +ij ij

 

(4.6) 

5.625 135 129.375f\ =- + =ij  

(4.7) 
 
This results in an angle estimation error of around 0.6° in this case. 

4.2 Position Estimation 

Trilateration is a method for calculating the intersection of three circles, given their centres 
and radii. For localisation purposes this means a node can determine its position if it knows 
the positions of three other nodes and their relative distances. The Sens-r node however in 
addition to obtaining position information can calculate the bearings of its neighbour nodes 
(see section 4.1), and given that information then determine the discrimination angles 
between nodes. This allows position estimates to be made with only two reference nodes of 
known position. 
 

 

Figure 4.1: Triangle with two neighbour nodes A & B used by node C for localisation. 

Nodes measure their relative bearings to each other with respect to a local 0° bearing. 
These bearings are denoted by ūij, the bearing of node j to node i. By sharing this bearing 
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information nodes can calculate the discrimination angles of a neighbour triangle (figure 
4.1) using the following equations: 
 

( 360)mod360ACB CB CAq f f= - +  

(4.8) 

( 360)mod360CBA BA BCq f f= - +  

(4.9) 

( 360)mod360BAC AC ABq f f= - +  

(4.10) 
 
The positions of reference nodes A & B are also shared, from which the distance between 
the reference nodes ||A ï B|| can be calculated. Using this and the calculated discrimination 
angles, node C can calculate its distance to the reference nodes A & B using the sine rule. 
 

sin

sin

CBA

ACB

A B
C A

q

q

-
- =  

(4.11) 

sin

sin

BAC

ACB

A B
C B

q

q

-
- =  

(4.12) 
 
The problem is then reduced to an intersection of two circles. Here a point P is introduced 
along the line AB which is perpendicular to node C. 
 

 

Figure 4.2: P is a point on AB orthogonal to C. 
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By Pythagoras theorem: 
 

2 2 2
C A P A P C- = - + - 

(4.13) 
2 2 2

C B P B P C- = - + - 

(4.14) 
 

Also: 

P A A B P B- = - - - 

(4.15) 
 
From equations 4.13, 4.14 & 4.15 it is found (see Appendix B.1) that: 
 

2 2 2

2

C B C A A B
P B

A B

- - - + -
- =

-
 

(4.16) 
 

Using this result and equation 4.14: 
 

2 2
P C C B P B- = - - - 

(4.17) 
 

As points A, B and P lie on the same line point P can be calculated using the ratios of PB and 
AB as follows: 
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x x

A B
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= -
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(4.18) & (4.19) 
 
This then allows the coordinates of node C to be calculated, by using the equation of a point 
perpendicular to AB for a distance of ||P ï C|| away from point P. Note that as there are 
only two reference nodes it is an undetermined system with two symmetric solutions (as 
shown in figure 4.2). 
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(4.20) & (4.21) 
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(4.22) & (4.23) 
 
To eliminate tƘŜ ƎŜƻƳŜǘǊƛŎŀƭƭȅ ƛƴŎƻǊǊŜŎǘ ΨǇƘŀƴǘƻƳΩ ǎƻƭǳǘƛƻƴΣ ŀ ǎƭƛƎƘǘƭȅ ŘƛŦŦŜǊŜƴǘ ŀǇǇǊƻŀŎƘ 
was taken to that taken in the paper Incorporating Multiple Estimates for Accurate 
Localization in Infrared Ad Hoc Networks [1]. This disambiguation method is outlined below. 
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if ( | | xA -  xB| |  >= | | yA -  yB| | )  
  if ( xA < xB)  
    if ( ǷACB < 180)  
      choose solution with smallest y  
    else  
      choose solution with larg est y  
  else  
    ÉÆ ƽǷACB < 180)  
      choose solution with largest y  
    else  
      choose solution with smallest y  
else  
  if ( yA < yB)  
    ÉÆ ƽǷACB < 180)  
      choose solution with largest x  
    else  
      choose solution with smallest x  
  else  
    ÉÆ ƽǷACB < 180)  
      choose solution with smallest x  
    else  
      choose solution with largest x  

 
A correct position estimate is made based on the size of the angle between the two 
reference nodes about the node C. The phantom elimination algorithm is run in the x or y 
axis, whichever provides greatest distance between the two reference nodes. This helps to 
increase reliability in the event of measurement errors, reducing the risk of an incorrect 
solution being selected. This method also works for cases where ||yA ï yB|| = ||xA ï xB||, as 
verified by testing (see section 6.2). 
 

 

a) ||xA ï xB|| Ó ||yA ï yB|| 

 

b) ||xA ï xB|| < ||yA ï yB||

Figure 4.3: Illustration of the phantom elimination method. 

!ƴ ŀŘŘƛǘƛƻƴŀƭ Ǉƻƛƴǘ ǘƻ ƴƻǘŜ ŀōƻǳǘ Ǉƻǎƛǘƛƻƴ ŜǎǘƛƳŀǘƛƻƴ ƛǎ ǘƘŜ ǊŜǉǳƛǊŜƳŜƴǘ ǘƘŀǘ ƻƴƭȅ ΨǿŜƭƭ 
ŎƻƴŘƛǘƛƻƴŜŘΩ ǘǊƛŀƴƎƭŜǎ as described by Chandra [14] should be used to make estimates. In 
equations 4.11 & 4.12 the sine rule is applied ǘƻ ŘŜǘŜǊƳƛƴŜ ƴƻŘŜ /Ωǎ ŘƛǎǘŀƴŎŜ ǘƻ ǘƘŜ 
reference nodes, to get a rational solution we require sin ɗACB to be non zero. These 
equations and the resulting distances are very sensitive to errors in the measurement of 
ɗACB, especially when sin ɗACB is close to zero (at 0° and 180°). 
 
Sensitivity to errors in angle measurement can be measured by taking the partial derivatives 
of equations 4.11 & 4.12 with respect to measured angle as shown below. 
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(4.24) 
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2
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(4.25) 
 
Ψ²Ŝƭƭ ŎƻƴŘƛǘƛƻƴŜŘΩ ǘǊƛŀƴƎƭŜǎ have discrimination angles that are less sensitive to errors. Error 
sensitivity could be used as a method to indicate the quality of position estimates made. 
However in this implementation, only a simple check is made before making a position 
estimate to ensure that angles are not too close to 0° or 180°. 

4.3 Anchor Hop Distance Weighted Localisation 

In a relatively dense ad hoc network nodes will have multiple neighbours from which they 
can make position estimates. All of these estimates must be combined into a single estimate 
which a node takes as its current estimated position and communicates to its neighbours. In 
iterative localisation schemes, as time goes on, more nodes become able to estimate their 
positions, these nodes then become references from which their neighbours can make 
position estimates. Over time, localisation information propagates from anchor nodes 
across the network and accuracy improves as more reference nodes become available to do 
position estimation. 
 
The AHDWL algorithm utilised in this project is based on an iterative exponential weighted 
moving average (EWMA) algorithm. A EWMA applies weighting coefficients to data points 
which decrease exponentially; in localisation terms this means that the weighting for each 
older position estimate decreases exponentially giving greater importance to recent 
estimates whilst not totally discarding the older estimates. A general EWMA equation is 
given by: 
 

1t t tS S Ya b-= +  

(4.26) 
1a b= - 

(4.27) 
where,  St = current EWMA value 

 St-1 = previous EWMA value 
 Yt = latest estimate made 

 

Note Ŭ & ɓ are weighting coefficients that must sum to one, the larger ɓ is the quicker the 
system can respond to change but at higher sensitivity to errors in estimates. For 
localisation, equation 4.26 can be ǳǎŜŘ ǘƻ Ŏƻƴǘƛƴǳŀƭƭȅ ǳǇŘŀǘŜ ŀ ƴƻŘŜΩǎ Ǉƻǎƛǘƛƻƴ ŜŀŎƘ ǘƛƳŜ ŀ 
new position estimate is made. In that case St is its averaged new position, St-1 is its previous 
averaged position and Yt is the latest instantaneous position estimate made. 
 
Iterative localisation schemes suffer from accumulation of errors at each hop away from the 
anchor nodes, as they rely only on immediate neighbours to do position estimation. Any 
position estimation errors will be passed onto neighbours and propagate across the 
network. This can render position estimates unreliable, particularly in large networks. 
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Figure 4.4: Position estimate errors can accumulate in iterative localisation schemes. 

The AHDWL algorithm uses the anchor hop counts of reference nodes (how many hops each 
reference node is from an anchor node) to selectively weigh individual position estimates in 
the EWMA equation. It assumes that the further away nodes are from an anchor node, the 
more likely they are to have larger errors in their position estimates due to error 
accumulation. Likewise, the closer a node is to an anchor node the smaller the error is likely 
to be. Thus estimates made with anchor nodes, or nodes close to the anchor nodes are 
considered better quality estimates and given higher weightings. 
 
Additional weighting coefficients are added to the EWMA equation so that new position 
estimates will be weighted based on anchor hop count. There are many ways to go about 
this; in the following scheme weighting is inversely proportional to hop count. 
 

1

2A B

W
d d
=

+ +
 

(4.28) 

baseWb b=  

(4.29) 
where,  W = weighting coefficient 

 dA & dB = anchor hop count of nodes A & B 
 ɓbase = 2 × maximum value of ɓ 
 ɓ = weighting coefficient in EWMA (equation 4.27) 

 

For simplicity ɓ is given here as the average hop count of the two reference nodes. ɓbase 
represents the maximum weighting of a position estimate (in this implementation ɓbase is set 
at 0.7, so the maximum weighting is 0.35). 

4.4 AHDWL Implementation 

Whilst specific details as to the implementation of the algorithm are covered in section 5, a 
ƎŜƴŜǊŀƭ ƻǾŜǊǾƛŜǿ ƻŦ ŀ ƴƻŘŜΩǎ ƻperation to achieve localisation is provided here. In order to 
be able to calculate position estimates a node must have both position and bearing 
information regarding its neighbours. As mentioned previously, hello sequence packets are 
used in order to determine local bearings of neighbours. In order to obtain a neighbour 
ƴƻŘŜΩǎ Ǉƻǎƛǘƛƻƴ ŀƴŘ ōŜŀǊƛƴƎ ƛƴŦƻǊƳŀǘƛƻƴ ŀ ƴŜƛƎƘōƻǳǊ ǘŀōƭŜ ǳǇŘŀǘŜ ǇŀŎƪŜǘ ƛǎ ǳǎŜŘΦ 9ŀŎƘ ƴƻŘŜ 
Ƴŀƛƴǘŀƛƴǎ ŀ ƴŜƛƎƘōƻǳǊ ǘŀōƭŜ ƻŦ ƛǘǎ ƻǿƴ ŀƴŘ ƛǘǎ ƴŜƛƎƘōƻǳǊΩǎ ǇƻǎƛǘƛƻƴΣ ƘƻǇ Ŏƻǳƴǘ ŀƴŘ ōŜŀǊƛƴƎ 
information which is then used to calculate position estimates when new data is added. 
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Figure 4.5: Simplified state diagram of the AHDWL algorithm. 

The operation of each node as specified in the AHDWL algorithm is as follows. Nodes are 
initialised and enter an idle state. After a period of no activity, the node will send a 
sequence of hello packets and return to being idle. If a hello sequence is received a bearing 
for the transmitting node is calculated and then added to the neighbour table. If a 
neighbour table update packet is received the information it contains is added to the 
neighbour table. If there is sufficient information in the table on reception of either of these 
packet type a position estimate will be calculated for all triangles affected by the new data 
and a neighbour table update packet will be sent. In this way node position estimates 
should quickly converge. 
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5. Code Implementation 

The following section provides an overview of how the localisation scheme was 
implemented in code on the Sens-r testbed, the code itself is provided in Appendix D. Whilst 
ǘƘŜǊŜ ƛǎƴΩǘ time to provided a detailed explanation of every line of code here, key functions 
are highlighted and explained in order to provide the reader with a detailed understanding 
of how each system block works and how these blocks interact to form the final system and 
do localisation. Note that all code snippets in this section are pseudocode representations 
(using C operators) of the actual code. 

5.1 Overview 

The communications subsystem is required to do asynchronous detection and decoding of 
packets, packet transmission with clock information embedded as well as USART 
communications. This meant producing Atmel based C code, which was completely 
interrupt driven, in order to control the transmitter and receiver arrays. For the main 
processing subsystem a real time operating system was required to do multitasking and 
share processor usage and resources between tasks. The RTOS employed in this project was 
the Micrium ˃ /κh{-II real time kernel. 
 
Lƴ ƻǊŘŜǊ ǘƻ Ǌǳƴ ˃/κh{-II on the mainboard both the source code and an AVR port were 
required. Version 2.60 of the source code was obtained from the CD which came with the 
book MicroC/OS-II: The Real-Time Kernel [9], the AVR port by Julius Luukko [15] was utilised 
to customise the OS to run on the ATmega128 microcontroller. The WinAVR toolkit [6] was 
employed to provide a GNU C compiler and C runtime library [16]. AVR Studio 4 [11] was 
used both as a GUI for the compiler and for programming the boards via an AVR ISP MkII 
USB programmer. 

5.2 Communications Board 

5.2.1 USART & SLIP Protocol 

USART is used to relay packets received via infrared to the mainboard, as well as to receive 
and act on commands sent by the mainboard. The USART hardware provided by the AVR 
chips makes serial communications relatively easy to implement. There are two read buffers 
and a shift register for receiving bytes as well as a write buffer and shift register for byte 
transmission. Data is read from the receive buffer and written to the transmit buffer by 
reading and writing to the USART data register UDR0. Functions are also provided for parity 
check bit generation, different frame formats and there are recovery units for asynchronous 
data reception. Transmit complete, receive complete and transmit buffer empty flags and 
interrupts are provided as well as frame, data overrun and parity error flags. 
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For all serial communications in the code a BAUD rate of 19200 bytes per second is used, 
with a frame format of eight bits, single start (St) and stop (Sp) bits (for synchronisation) and 
no parity. 
 

 

Figure 5.1: Serial frame format. 

The code for transmitting bytes is a simple polling routine where the data register empty 
flag must be set before writing to the buffer. 
 
// send byte on USART  
whil e (!(usart data reg empty))  

NOP 
 
set uart data reg (UDR0) = byte to send  

 
Serial receive and transmit buffers are provided in the code to allow for messages of 
multiple bytes to be sent and received. These packets are framed according to serial line 
internet protocol (SLIP) [17]. SLIP allows for variable length packets to be sent by use of an 
END character (0xC0) to end packet formation at the receiver. 
 
Typically an END character is also sent at the start of a packet to flush out the receiver 
buffer. If there is a byte in the packet with the same value as the END character a two 
character code is sent instead; an ESC character (0xD2) followed by an ESC_END character 
(0xD3). This will be decoded to the correct value at the receiver but packet formation will 
not terminate. Likewise in the case of a byte in the packet with the same value as the ESC 
character, a two character code is sent; an ESC character followed by an ESC_ESC character 
(0xD4). 
 

END 5!¢!Χ END 

Figure 5.2: Serial packet framing using SLIP protocol. 

At the receiver decoding SLIP protocol involves the use of an ESC character flag (in the code 
the most significant bit of the byte count variable is used) to indicate how the next character 
is to be decoded. In the event of an ESC character followed by non-control character 
protocol violation, the non-control character is added to the packet and the ESC character 
ignored. 
 
// ISR on USART reception of a byte  
if (rxbyte == END)  
  // packet complete  
  if( buff er pointer != start of buffer )  
    decode packet in buffer and perform command  
  reset buffer pointer  
else if (rxbyte == ESC)  

set ESC flag  
else if (rxbyte == ESC_END)  
  if( ESC flag )  
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    reset ESC flag  
    add END char to buffer  

else  
  add ESC_END to buff er  

else if (rxbyte == ESC_ESC)  
  if(ESC flag)  
    reset ESC flag  
    add ESC char to buffer  

else  
  add ESC_ESC to buffer  

else  
  if( ESC flag)  
    reset ESC flag  

add rxbyte to buffer  

 
The code for transmitting bytes according to SLIP protocol is similar to the above; the byte 
to send is examined and then given control characters if necessary, and at the start and end 
of the packet an ESC byte is sent. 

5.2.2 Control of Transmission Power 

As stated earlier, control of transmission power is achieved by changing the duty cycle of a 
PWM signal (PWM_V) which controls the output power of a voltage regulator. This is 
achieved on the ATmega168 device by using a timer-counter in fast PWM mode. In this 
mode the counter counts up from 0 to a TOP value (in this case 262) specified by the ICR1 
register and then resets to 0. An output is given when the count matches the value of an 
output compare register (OCR1B in this case), by varying this register control of duty cycle is 
achieved. Transmission power is directly proportional to the duty cycle. 
 
Note that the duty cycle is restricted to a maximum of 80% as the transistors which control 
the transmitter array cannot switch at significantly above 5V; the regulator was found to 
deliver 6.2V at 100% duty. 

5.2.3 Control of Transmitter & Receiver Arrays 

The communications board has a transmitter array of sixteen IR LEDs wired up in a 4 × 4 
matrix, which is supplied by a 38 kHz signal (PWM_IR). This signal is provided by using the 
same timer-counter that is used for PWM of the voltage regulator, but using a different 
output compare pin with a duty cycle of 50%. The main clock runs at 10 MHz and the timer-
counter counts from 0 to 262, which gives an output of 10 MHz/262 = 38.2 kHz. 
 
Control of the transmitter matrix is achieved by use of a transmit mask to indicate which 
quadrant and which ground transistor to set for transmission of each message. The transmit 
mask is of the form 0bZYWXDCBA, where the DCBA bits represent the quadrants and the 
ZYWX bits represent the ground transistors. In order to ensure consistent transmission 
power only one ground transistor can be set at a time, this is accounted for in the Ψtransmit 
byteΩ function where if more than one ground transistor bit is set in the mask, only one will 
be set. 
 
// set only 1  GND transistor  
if ( transmit mask  bit  0x10)  
  set W pin  
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else if ( transmit mask bit  0x20)  
  set X pin  
else if ( transmit mask bit  0x40)  
  set Y pin  
else if ( transmit mask bit  0x80)  
  set Z pin  

 
The transistors for the A, B, C & D horizontal rails which control the quadrants and the 
PWM_IR transistor are PNP type. This inverts the logic required to control these rails, 
ŀƭǘƘƻǳƎƘ ŦƻǊ ǘƘŜ t²aψLw ǎƛƎƴŀƭ ǘƘƛǎ ŘƻŜǎƴΩǘ ǊŜŀƭƭȅ ƳŀǘǘŜǊ ŀǎ ǘƘŜ ǎƛƎƴŀƭ ǿƛƭƭ ǎǘƛƭƭ ōŜ ŀǘ оу ƪIȊ 
with 50% duty. So for code concerning setting the quadrant transistors (used for encoding 
messages) this must be taken into account, often marked by Ψtbt ƭƻƎƛŎΩ ƛƴ ǘƘŜ ŎƻŘŜ 
comments. 
 
The receiver array of eight BRM-1030 receiver modules is set up such that whenever a 
receiver changes state a pin change interrupt is generated (note nesting of interrupts does 
not occur), allowing for asynchronous and simultaneous reception of packets (as the ISR will 
check all receivers as to whether they have changed state). The BRM-1030 only detects 
signals modulated at about 38 kHz and is idle logic hi, this means that received signals will 
be inverted.  
 
Details regarding infrared packet transmission, encoding, reception and decoding are 
covered in sections 5.2.5 & 5.2.6. 

5.2.4 Commands from Mainboard 

The communications board essentially acts as a slave to the mainboard, executing 
commands and relaying completed packets. The command packet format is as follows: 
 

END COMMAND\QuadID 5!¢!Χ END 

Figure 5.3: Serial command packet from mainboard. 

The mainboard can give the following commands: 
- SET_TO (0x30) 
- SET_FROM (0x40) 
- SET_TYPE (0x50) 
- SET_DATA (0x60) 
- SET_LEN (0x70) 
- SET_TX_POW (0x20) 
- SEND_ALL (0x10) 

 
The command byte is split into its four most significant bits which determine which 
command is to be executed and its remaining four bits which determine which quadrant 
and transmit packet buffer it is concerned with. The SET_TO, SET_FROM, SET_TYPE, 
SET_DATA and SET_LEN commands set the destination address, source address, IR packet 
type, payload length and payload data fields of the four transmit quadrant buffers 
respectively. The SET_FROM command also sets the global variable self_id which identifies 
the node. Also note that the SET_DATA command sets the payload length automatically, as 
it the payload length is measured when writing the data to the buffers. This makes the 
SET_LEN command largely redundant except in the case of an empty data payload. 
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The SET_TX_POW command sets the duty cycle of the signal which controls the output from 
the voltage regulator, calling the transmission power function and setting the global variable 
ir_tx_power which is appended to the IR packets. The SEND_ALL command tells the 
communications board to set the transmit mask (which determines which transmitters and 
quadrants are to send) and to then frame & send the packets in its buffers. 

5.2.5 IR Packet Encoding & Transmission 

Each quadrant has a transmit buffer for packets to be sent. On reception of a SEND_ALL 
command from the mainboard messages will be sent on each buffer according to the 
transmit mask specified. This sets one of the ground transistors and enables a timer 
interrupt which is used by an interrupt routine to send the bits. 
 
To provide synchronisation capability at the receiver, clock information needs to be included 
in the framing of each byte. Originally, RC5 [18] was examined as a method for framing 
bytes, where each byte consists of two start bits and Manchester encoding to embed clock 
information. While perfectly feasible, a simpler encoding and decoding method using only 
one start bit was found to be just as effective on the BRM-1030 receiver modules. 
 
A timer-counter at 1/64th the main clock speed counts from 0 to 78, generates an interrupt, 
and resets to 0. This interrupt occurs at every half bit period, this is around 500µs which 
makes for a maximum pulse width about 1ms, which falls just outside the desired range of 
the receivers of 400 to 800µs but is seen to work well. At the first interrupt the start bit 
(logic 1, lo to hi in Manchester encoding) is sent which begins byte reception at the receiver. 
Then the data bits are sent from LSB to MSB with Manchester encoding by use of a next bit 
buffer, which determines which transmitters need to be toggled hi or lo for the next half 
period (indicated by a toggle flag).  
 

 

Figure 5.4: IR frame format. 

At the end of the byte the timer interrupt is disabled and an inter-symbol delay of at least 
1ms is waited before sending the next byte (by re-enabling the interrupt) in order to ensure 
the receiver is idle for at least one bit period. 
 
// ISR on timer - counter output compare match  
reset counter  
 
if ((bit count == 8) AND !(toggle flag))  

ABCD output lo  
disable timer interrupt on compare match  
reset counter  
set bit count to 0xFF // signals send by tes function that byte has been sent  

else if (start flag) // start bit logic 1  
clear start flag  
set toggle flag  
ABCD output lo // machester logic 1 is lo to hi   

else if (toggle flag)  
clear toggle flag  
XOR ABCD output  with transmit mask  

else  
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set toggle flag  
for each txbyte buffer n: 0 to 3  
  if (txbyte bit( bit count ) )  
    set (next bit buffer  bit ( n))  
AND transmit mask with next bit buffer  
ABCD output lo for bits set in the above result  
// as machester logic 1 lo to hi, logic 0 hi to lo  
increment bit count  

 
In each byte buffer there could be a packet of a different length, so the Ψsend ǇŀŎƪŜǘǎΩ 
function will use the send mask to tell the ISR routine which packets still have bytes to be 
sent by setting only those quadrants which remain to be sent. 
 
// send pa ckets function  
disable rx pin change interrupts  
 
f ind max length of packets in transmit quadrant buffers  
  
for all bytes waiting in buffer s i: 0 to max  
  set send  mask to ZYWX0000 
 
  for quadrants ABCD j: 0 to 3  
    if ((buffer message length > i) && (tran smit mask bit j ))   
      set send mask bit j  
    else  
      reset send mask bit j  
 
  function send bytes(send mask, bytes to send)  

delay(intersymbol delay)  
 
enable rx pin change interrupts   

 
Given the small overhead and relatively simple implementation of SLIP for serial 
communications it is also used for framing of infrared packets. The IR frame format used is 
shown in figure 5.5 below. 
 

END END END DA SA TxID TxPOW TYPE LEN 5!¢!Χ CRC END 

Figure 5.5: IR packet framing using SLIP protocol. 

Note that three END characters are appended to the start of the frame to clear out the 
receiver buffers rather than just one. This is because during testing it was found that the 
BRM-1030 ǊŜŎŜƛǾŜǊ ǿƻǳƭŘ ƻŦǘŜƴ ƘŀǾŜ ŜǊǊƻǊǎ ƛƴ ǘƘŜ ŦƛǊǎǘ ǘǿƻ ōƛǘǎΣ ǘŀƪƛƴƎ ǘƛƳŜ ǘƻ ΨƎŜǘ ǎŜǘΩΦ The 
error rate in decoding packets correctly was massively reduced by transmitting three END 
characters. 
 
The MAC header contains the destination and source addresses of the packet, the packet 
type and the length of the data payload, all of which are set by the mainboard. It also 
contains the ID of the transmitter the packet is being sent on (the transmit mask for that 
LED) and the transmission power, which are added automatically by the communications 
board. On reflection, transmitter ID and power may not always be useful and should instead 
be sent in the payload only when required. Packets are framed on reception of a SEND_ALL 
command from the mainboard. A cyclic redundancy check byte is appended to the trailer of 
the packet by executing an update CRC function for each new byte added to the packet.  
 
When packets are transmitted on the LEDs they will be detected by the adjacent receivers, 
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interfering with any packets that are being received on them. It is desirable to delay packet 
transmission until packet reception on the receiver is complete. To do this one would need 
to ensure that the mainboard knows not to give the communications board commands to 
change the transmit buffers; a handshaking routine could achieve this. Unfortunately there 
was insufficient time to realise such a scheme, so a basic solution was implemented which 
disables the receivers when a byte is being transmitted. This would work well provided 
medium access control protocols were in place to ensure that only one node can transmit in 
an area at a time. 

5.2.6 IR Packet Reception & Decoding 

Receivers are idle hi when they are not receiving any bytes. On reception of data the output 
from the receivers will be that of the transmitted bit stream inverted. The first bit change 
from the start bit serves as the starting point for sampling of the other bits on that receiver, 
the receiver then waits for 3/4 of a bit period and samples the bit signal after the middle 
synchronising edge. If there is no transition by 5/4 bit time then the byte is discarded. In the 
code an allowance for ±10% error in the bit width is made, and thus a range of 3/4 - 10% to 
5/4 + 10% is allowed. Bit width is twice the half bit interrupt count given in the transmit 
code, so given 10% leeway this means a count of 156 ± 15.6. This corresponds to a minimum 
3/4 count of 111 and a maximum 5/4 count of 226, thus these values appear in the code. 
 

 

Figure 5.6: Synchronising and sampling of IR data. 

Note that because the bit stream is inverted the state of the receiver when sampled will 
correspond to inverse logic (an inverted logic 1 is hi to lo, so it is sampled lo). The 
implementation of this decoding scheme in code is a bit complicated given it must to deal 
with eight receivers rather than just one. To do this another timer-counter running at 1/64th 
the main clock speed is used as a counter to feed eight ΨǾƛǊǘǳŀƭΩ ǘƛƳŜǊs. Basically, whenever a 
pin change interrupt occurs on one of the receivers the value of the timer-counter is added 
to the virtual timers, and the timer-counter reset. In the event of a virtual timer overflow 
the virtual timer is reset and any byte being received on that receiver discarded (this is the 
same as for the 5/4 bit width timeout for no sync transition). When a receiver has changed 
input its virtual timer is read to see if it falls within 3/4 and 5/4 bit width range. If it does the 
sampled bit is shifted into the receiver byte buffer, and on reception of eight bits the byte 
added to the receiver packet buffer after SLIP decoding. 
 
// ISR for receiver pin ch ange 
set delta as timer - counter  count  
reset counter  
enable timer - counter if disabled (on overflow)  
 
store previous receiver pin state  
take new receiver pin state  
pin change = new rx pin XOR prev rx pin  
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// update virtual timers  
for each timer i: 0 to 7  
if (rx timer[i] < 253)  
  set rx timer[i] += delta  
else  
  set rx timer[i] = 253 // overflow  
 
for each receiver i: 0 to 7  
if ((rx timer[i] > 226) AND pin[i] has changed)  
  // start bit from idle hi or timeout  
  reset bit count[i]  
  reset rx byte buffer[i]  
  res et rx timer[i]  
else if ((rx timer[i] within 111 to 226) AND ( bit count[i] < 8 ) )  
  if !(pin[i]) // inverse logic  
    set bit[i] in rx byte buffer[i]  
  increment bit count[i]  
  if (bit count[i] == 8) // byte received  
    do SLIP decoding of byte  
    function  ir_recv_packet(i)  
    reset ir_rx_bit_cnt[i]  

 
When an END character is received the receiver packet buffer is then copied and each byte 
passed through a CRC check. If at the end of this check the CRC byte is found to be incorrect 
the packet is discarded, also if the packet if found to be addressed to another node it is 
discarded (the DA field is neither addressed to the node or a broadcast).  
 
// receive packet function  
copy receiver packet buffer  
 
check CRC byte  
if (CRC byte is incorrect)  

reset buffer by te counter  
discard packet & return  

 
if (DA == self ID OR broadcast ID (OxFF))  
  discard CRC field  
  append rx ID to packet  
  forward packet on USART to mainboard using SLIP  
 
reset buffer byte counter  

 
Otherwise packets are forwarded to mainboard via USART with the CRC byte removed and 
the receiver ID appended to it like in figure 5.7. 
 

END DA SA TxID TxPOW RxID TYPE LEN 5!¢!Χ END 

Figure 5.7: IR received packet forwarded to the mainboard. 

5.3 Mainboard 

5.3.1 PC Communications 

Serial communications with the PC are done via serial UART in order to output data and 
provide a debugging platform for the code. An RS232 to TTL circuit is used in order to 
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convert the output of the mainboard to compliant serial logic levels and HyperTerminal used 
to receive messages at the PC. 
 
The code for transmitting bytes over USART (to both the PC and communications board) is 
different from that used on the communications board, as a polling routine would waste 
valuable clock cycles when other tasks could be doing work. Instead messages are written to 
a transmit buffer, and each byte written on the execution of a USART data register empty 
interrupt service routine. When the transmit buffer is written to, this interrupt is enabled 
and disabled on no bytes remaining to be sent. Note that SLIP protocol is not used to 
communicate with the PC (but it is for the communications board). 
 
/ /  send byte to PC on USART  
pend semaphore(sem pc tx)   // initialised to buffer size  
 
add tx byte to buffer  
if reach end of buffer point to start  
incremen t pc tx cnt  
 
enable data reg empty interrupt  
 
// ISR for USART data reg empty  
store register state  
 
if (pc tx cnt)  

decrement pc tx cnt  
put buffer byte into uart data reg  

 
post semaphore(sem pc tx)  

else  
disable data reg empty interrupt  
 

restore register st ate  

 
To provide suitable formatting for output to the PC the sprintf statement is used in order to 
produce formatted output strings to send via USART. Due to space constraints however, it 
was found unfeasible to simply use sprintf statements where format strings are stored in 
SRAM. Instead format strings are stored in program memory by using the macro PSTR, and 
the sprintf_P statement is used to produce output strings to send to the PC. Static strings 
are also stored in program memory and sent over USART via separate PC transmit functions 
denoted in the code by the άψtέ ǎǳŦŦƛȄΦ 

5.3.2 Control of IR Communications 

By issuing commands over USART the mainboard can control the operation of the 
communications board by setting the transmission power, the quadrant transmit packet 
buffers and the transmit mask which determines on which transmitter LEDs messages are 
sent. The commands that can be issued are: SET_TO, SET_FROM, SET_TYPE, SET_DATA, 
SET_LEN, SET_TX_POW and SEND_ALL, the structure and operation of which was largely 
covered in section 5.2.4. 
 
Access to the Ψsend commandΩ function is protected by a mutex to ensure that access to the 
quadrant transmit buffers is exclusive to the task giving the command. Also when writing a 
whole message to the transmit buffers the full sequence of commands required is also 
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mutex protected (to prevent other tasks from overwriting parts of the buffers). Furthermore 
a delay of the period required to send a packet is introduced after giving a SEND_ALL 
command to ensure that the buffers are not overwritten whilst infrared transmission 
occurs. 
 
// command sequence for setting & transmitting a message  
pend mutex (mutex  comms msg tx )  
 
function send cmd(SET_TO, DA)  
function send cmd ( SET_FROM, self  ID)  
function send cmd (SET_TYPE, message t ype)  
function send cmd ( SET_DATA, data  pointer , payload length)  
function send cmd (SET_TX_POW, tx  power)  
function send cmd (SEND_ALL, transmit mask)  
 
delay( time to send )  
post  mutex(mutex  comms msg tx)  

 
Note that on initialisation the mainboard must send a SET_FROM command in order to set 
the value of self_id at the communications board, as it is used to determine which received 
packets to discard based on destination address.  

5.3.3 Idle & Hello Sequence Tasks 

In section 4.4 the implementation of the AHDWL algorithm was discussed with reference to 
a state machine representation (figure 4.5) of the system. In the code the state diagram is 
effectively divided into three tasks as follows: 
  

 

Figure 5.8: Division of states amongst the RTOS tasks. 

There are always at least two tasks running, the idle task and the communications task. The 
communications task is inactive until a message is received from the communications board, 
where it processes the packet received and performs actions accordingly. The idle task is the 
lowest priority task. It is first involved with initialisation of tables and setting the node ID 
according to the DIL switch (a node with the DIL MSB set is identified as an anchor node and 
its position also set). The task then sits in a while(1) loop where it counts a random delay 
time of at least one minute (idle timeout) and then creates a hello sequence transmit task of 
higher priority. 
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// idle task  
initialise tables  
set self id  
function cmd(SET_FROM, self id)  
  
while (1)  

for i: 0 to 60 + random ( 0 to 64)  
  increment debug LEDs  
  delay(1s)  
  ÆÕÎÃÔÉÏÎ ÐÃ ÓÅÎÄƽƧƚƨƾ 
 

  pend semaphore(sem hello seq) // initialised to 1  
   
  create task (hello seq task)  

 
The hello sequence transmit task sends a sequence of hello packets at increasing 
transmission power on all transmitters to allow neighbour nodes to determine the 
ǘǊŀƴǎƳƛǘǘŜǊ ƴƻŘŜΩǎ ōŜŀǊƛƴƎΦ The hello sequence packet structure is like that in figure 5.7 with 
no data payload; the important values are the source address and the transmission power. 
 

END END END DA = 0xFF SA TxID TxPOW = D% TYPE Ґ ΨIΩ LEN = 0 CRC END 

Figure 5.9: Hello packet framing using SLIP protocol. 

The hello sequence task first sends hello packets on all four quadrants with one ground 
transistor set. It increases the power of the packets linearly by a given duty cycle step size to 
a maximum duty (of no greater than 80%). The transmission power duty cycle is encoded in 
the hello packets. This is repeated for the remaining three ground transistors. To indicate 
the end of a hello sequence and to allow the receiver to calculate a bearing hello packets 
with a tx power field set to 0xFF are transmitted on each LED. The task then posts a 
semaphore signalling to the idle task that it is complete and deletes itself. 
 
// hello seq task  
while (1)  
 
  for each ground transistor WXYZ i: 0 to 3  
  transmit mask  = one of ZYWX bits & DBCA set  
  pow = POWER_MIN 
  while (pow <= POWER_MAX) 
 
    pend mutex (mutex  comms msg tx )     
    ÔÒÁÎÓÍÉÔ ÈÅÌÌÏ ÐÁÃËÅÔƽ$!ƙ!,,Ɨ 3!ƙÓÅÌÆ ÉÄƗ ÔÙÐÅƙƦ(ƦƗ ÔØÐÏ×ƙÐÏ×ƾ    
    pow += POWER_STEP      
    post mutex (mutex  comms msg tx)  
 
  // end hello seq  
  for each ground transistor WXYZ i: 0 to 3  
  transmit mask = one of ZYWX bits & DBCA set  
   
    pend mutex (mutex comms msg tx)     
    transmit packet(DA:ALL, SA:self IDƗ ÔÙÐÅƙƦ(ƦƗ ÔØÐÏ×ƙ0xFF)  
    post mutex(mutex comms msg tx)  
 
  post semaphore (sem hello  seq)  
  delete task(hello seq task)  
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5.3.4 Communications Task 

The communications task is highest priority task where the majority of the work is done, 
taking measurements of local bearings by reception of hello packets, updating neighbour 
tables, sending neighbour table update packets and performing localisation. The task is 
typically in an idle state pending on a signalling semaphore which is posted by the ΨUSART 
byte receivedΩ ISR when a full packet (an END character) is received from the 
communications board. Note that packets must be valid (pass a CRC check) and correctly 
addressed to even be forwarded to the mainboard. 
 
// comms task  
while (1)  
  pend semaphore(sem comms rx)  

copy recei ved packet to buffer  
 
  if SA is new add it to neighbour table  
 
ÉÆ ƽÔÙÐÅ ˮˮ ƥ(Ʀƾ 
  if (tx power != 0xFF)  
    if (!hello flag)  
      set hello flag  

      else if (SA != hello node id)  
        discard packet  
      else  
        use packet in hello array  
    else  
      reset hello flag  
      calculate bearing  
      recalculate position estimates affected by new bearing  
 
     if (self status ! = ƥUƦ)  
        send neighbour update packet  
 
  ÅÌÓÅ ÉÆ ƽÔÙÐÅ ˮˮ ƥ.Ʀƾ 
    decode position and bearing data  
    add positio n and bearing data (for other known nodes) to tables  
    if (self status != ƥAƦ)  
      check neighbour table and update self hops if required  
      do position calculation for all triangles with SA as a ref node  
 
    if (self status != ƥUƦ)  
      send neig hbour update packet  

 
When a packet is received it is copied to a buffer. If the packet is from a node never seen 
before the source address is added to the neighbour table as a new node. 
 
In the code a hello sequence can only be received from one node at a time. Originally 
consideration was given to providing capability for receiving up to two or three sequences 
simultaneously but was dismissed due to memory constraints. Later significant savings in 
memory were achieved, but there was insufficient remaining time to implement this. 
¢ƘŜǊŜŦƻǊŜ ƻƴ ǊŜŎŜƛǇǘ ƻŦ ŀ ƘŜƭƭƻ όΨIΩύ ǇŀŎƪŜǘΣ ƛŦ ǘƘŜ ǇŀŎƪŜǘ ƛǎ ǘƘŜ ŦƛǊǎǘ ǊŜŎŜƛǾŜŘ ǘƘŜ ǘǊŀƴǎƳƛǘǘƛƴƎ 
node ID is recorded and a flag set. Any hello packets from a different node will be discarded 
while this flag is set. The flag is unset and the hello sequence ends on receipt of a hello 
packet of power 0xFF, then a bearing estimate can be made. If this new bearing information 
affects any neighbour triangles at the receiver, new position estimates for those triangles 
are made (given sufficient information is available) and the current position estimate 
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updated. 
  
²ƘŜƴ ŀ ƴŜƛƎƘōƻǳǊ ǘŀōƭŜ ǳǇŘŀǘŜ ǇŀŎƪŜǘ όΨbΩύ ƛǎ ǊŜŎŜƛǾŜŘ hop count, position and bearing 
data are decoded and added to the neighbour and bearing tables. Position estimates are 
made for all neighbour triangles which the transmitting node forms with the receiver, given 
there is sufficient information to do so. Details regarding neighbour table update packets 
are provided in the next section. 

5.3.5 Neighbour Table Update Packet 

Neighbour table update packets are sent on reception of either a complete hello sequence 
or a neighbour table update packet, provided that the receiving node has a current valid 
position estimate (is of known status). A node is initialised as being either an anchor node 
ǿƛǘƘ Ǉƻǎƛǘƛƻƴ ǎǇŜŎƛŦƛŜŘ όŀƴŎƘƻǊ ǎǘŀǘǳǎ Ψ!Ωύ ƻǊ ŀ ƴƻŘŜ ƻŦ ǳƴƪƴƻǿƴ Ǉƻǎƛǘƛƻƴ όǳƴƪƴƻǿƴ ǎǘŀǘǳǎ 
Ψ¦ΩύΦ ¢ƘŜ ƳƛƴƛƳǳƳ ǊŜǉǳƛǊŜƳŜƴǘ ŦƻǊ ǎŜƴŘƛƴƎ ŀ ƴŜƛƎƘōƻǳǊ table update packet is a current 
valid position estimate όƪƴƻǿƴ ǎǘŀǘǳǎ ΨYΩύ and a hop count from the nearest anchor node 
(anchor nodes have a hop count of zero and are recognised as such). 
 

x1 x2 y1 y2 hops n1 ID ʊn1 1 ʊn1 2 Χ nN ID ʊnN 1 ʊnN 2 

Figure 5.10: Data payload for neighbour table update packet 

An encoding scheme for position and bearing data was created in order to reduce the length 
of packets whilst achieving sufficient accuracy. In this scheme only two bytes are used for x 
and y position data as well as for each bearing. 
 
Position information is encoded simply as a signed integer over two bytes. For encoding say 
an x value it is converted from a double value in metreǎ ǘƻ ŀ ǎƛƎƴŜŘ ƛƴǘŜƎŜǊ όнΩǎ ŎƻƳǇƭŜƳŜnt 
in C code) value in centimetres. The upper eight bits are then put into the x1 byte and the 
lower eight bits into the x2 byte. It is decoded by sticking these two bytes together as an 
integer and converting back from centimetres into metres. This means that values of up to 
ǘǿƻ ŘŜŎƛƳŀƭ Ǉƻƛƴǘǎ ŀŎŎǳǊŀŎȅ ŦǊƻƳ ҍонтΦсуƳ ǘƻ онтΦстƳ Ŏŀƴ ōŜ ŜƴŎƻŘŜŘΦ LŦ ŘŜǎƛǊŀōƭŜ 
millimetre accuracy could be achieved by conversion from metres to millimetres, resulting 
ƛƴ ŀ ǊŀƴƎŜ ƻŦ ǾŀƭǳŜǎ ҍонΦтсуƳ ǘƻ онΦтстƳΦ 
 
A more novel approach is taken for encoding bearings. Given a possible range of bearing 
values from 0° up to but not including 360°, maximum accuracy can be achieved by setting 
0x0000 to 0° and 0xFFFF one step below 360°. 
 

360
Step Size 0.0055

65535
= =  

(5.1) 
 
That is, a maximum resolution with a step size per bit of 0.0055°. To achieve this bearings 
are encoded as follows. 
 

65535
(int)

360
nNI f=  

(5.2) 
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This value is rounded to the nearest unsigned integer and then the top eight bits and lower 
eight bits transmitted. Decoding is achieved by inverting equation 5.2 above and forcing the 
division to be done as a double type after sticking the two received bytes back together as 
an unsigned integer. 
 

360
(double)

65535
nN If =  

(5.3) 
 
Upon receiving a neighbour table update packet a node will add the information contained 
to its bearing and neighbour tables (which are covered in the next section). If in a neighbour 
table update packet, there is bearing information about a node the receiver has not 
previously received a packet from then that bearing is ignored; even though the node is a 
neighbour of the transmitter it may not be a neighbour of the receiver. 
 
A neighbour table update packet is transmitted at maximum power to all nodes in the 
neighbour table for which there is local bearing data. A crude method of directional routing 
is achieved by taking those bearings and transmitting on the nearest transmitter LEDs. As 
only one packet is sent to ensure a neighbour will not receive multiple neighbour table 
update packets (which could result in multiple position estimates being made from the 
same data reducing the effect of the AHDWL).  
 
// neighbour table update packet transmission  
for all neighbour nodes in neighbour table i: 1 to 7  

if (local bearing[i] != NAN)  
  find nearest quadrant  ABCD 
  find nearest LED WXYZ  
  set transmit mask accordingly  

 
    pend mutex(mutex comms msg tx)  
    ÔÒÁÎÓÍÉÔ ÐÁÃËÅÔƽ$!ƙÉƗ 3!ƙÓÅÌÆ ÉÄƗ ÔÙÐÅƙƦ.ƦƗ ÔØÐÏ×ƙ-!8Ɨ ÄÁÔÁƙÐÏÓÉÔÉÏÎƗ ÈÏÐÓ  
  and local bearing info)  
    post mutex(mutex comms msg tx)  

5.3.6 Neighbour & Bearing Table Management 

Each node maintains a table of information about itself and its neighbour nodes, so that 
when new data is received, updated position estimates can be made using that data and 
then stored in the table. The table contains informatiƻƴ ŀōƻǳǘ ŜŀŎƘ ƴƻŘŜΩǎ ǎǘŀǘǳǎΣ ƘƻǇ 
count, current position and bearings to other nodes. 
 

ID status x est y est hops self n1 ... nN 

self self.status xself yself dself - ʊselfn1 ... ʊselfnN 
n1 n1.status x1 y1 d1 ʊn1self - ... ʊn1nN 

...  

... 

... 

...  

...  

...  

...  

 

...  

nN nN.status xN yN dN ʊnNself ʊnNn1 ... - 

Figure 5.11: Neighbour and bearing data table. 

Given that there was only five nodes in the testbed with a limited amount of flash memory 
available it was decided to limit the size of the table to accommodate for a maximum of 
eight nodes (including the node on which it is stored). For a large network of nodes it would 
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be desirable to use dynamic memory allocation rather than pre-allocating it as done in the 
code, but for a network of up to eight nodes this is sufficient and makes management of the 
table somewhat easier. 
 
In the code this table is split up into two data structures, the first is an array of structure 
variables with character type fields for ID, status and hop count as well as double type fields 
for x estimate & y estimate, and hop count which constitutes the neighbour table. On 
initialisation according to the DIL switch self ID and self status fields are filled, and for an 
anchor node the hop count is set to zero and the x, y position data is set as specified in the 
ŎƻŘŜΦ ¢ƘŜ ǊŜƳŀƛƴŘŜǊ ƻŦ ǘƘŜ ƴƻŘŜ L5ǎ ŀǊŜ ǎŜǘ ǘƻ лΣ ǘƘŜ ǎǘŀǘǳǎ ŦƛŜƭŘǎ ǎŜǘ ǘƻ Ψ¦Ω ŦƻǊ ǳƴƪƴƻǿƴ 
status, the x and y fields set to NAN (not a number) and hop count fields set to 0xFF. 
 
The second data structure is an 8 × 8 double type array of bearing variables. The row and 
columns correspond to the node IDs given in the neighbour table. A variable ʊij (row i, 
column j) in the array corresponds to the bearing of node j taken from node i. For example 
local bearings ʊselfj are all given in the first row of the array. The entire bearing table is 
initialised to NAN on declaration. 
 
On reception of a packet the neighbour table is checked to see if the transmitter node is 
already listed, this is done by checking the source address against the node IDs in the table. 
If a node ID is found to match the row index is recorded (effectively a neighbour table 
pointer), if no node ID is found to match then the first node ID which is zero (as initialised) 
has its row index recorded, and the source address will be written to the node ID field. In 
this way new nodes are added to the table. 
 
// add node to neighbour table if new  
for rows i: 1 to 7 //self is row 0  
  if  (node ID == SA)  
    break  

else if ( node ID == 0 )  
  set node ID = SA  

    break   
 
set neighbour table row pointer  = i  

 
On reception of a hello packet sequence a new bearing will be written to the first row of the 
bearing table which corresponds to the local bearings, to the column of the transmitter 
node. The majority of information in the neighbour and bearing tables comes from 
reception of neighbour table update packets. These packets fill out all the remaining rows of 
the neighbour and bearing tables by providing position, hop count and bearing data. Note 
ǘƘŀǘ ƛŦ ǘƘŜǊŜ ƛǎ ōŜŀǊƛƴƎ ƛƴŦƻǊƳŀǘƛƻƴ ŀōƻǳǘ ŀ ƴƻŘŜ ǘƘŜ ǊŜŎŜƛǾŜǊ ŘƻŜǎƴΩǘ ƘŀǾŜ ƛƴ ƛǘǎ ƴŜƛƎƘōƻǳǊ 
table, then that information is discarded. The status of the transmitting node is determined 
by its hop count, if it is zero then the node is an anchor otherwise it is a node of known 
position (position must be known to transmit a neighbour table update packet). 
 
Hop count of a non anchor node is determined directly by checking the neighbour table. It is 
simply the minimum of all the hop counts in the neighbour table plus one, as these are one 
hop neighbours. A non anchor node can only have its status change from unknown to 
known when a valid position estimate is made, which requires sufficient bearing and 
position information from at least two reference nodes to make a neighbour triangle. 
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5.4 Localisation 

5.4.1 Bearing Calculation 

The bearing calculation method which uses a sequence of hello packets, as outlined in 
section 4.1, is implemented as follows. A character type array with eight cells representing 
each receiver is initialised to zero before receiving the first hello packet; this array 
represents the transmission power of hello packets received on the receivers. When a hello 
packet is received on a receiver its transmission power is checked against that stored in the 
array. If the array value is zero or if the packet power is less than the array value, then the 
transmission power is written to the array. In this way the minimum power of all packets 
received on each receiver is recorded. 
 
From this array the receiver which received a hello packet at the lowest transmission power 
is identified and recorded, this receiver is assigned as temporarily as the 0° bearing. The 
other receivers are assigned local bearings in sequence as 45°, 90°, 135°, 180°, -135°, -90° 
and -45° taken clockwise from the minimum power receiver. Using the minimum received 
powers and these temporary bearings, a value for the delta angle from the minimum power 
receiver is calculated and thus the final bearing estimate is obtained. The bearing table is 
then updated for this new local bearing estimate. 
 
// calculate bearing given power array  
for receivers ID i: 1 to 7  
  if (array[i] != 0)  
    if ( ( array[i] < hello_array[rxmin] )  OR ( array[rxmin] == 0 ) )  
      set rxmin = i;  
 
for receivers ID i: 0 to 7  
  //r xmin assigned as bearing 0  

set j = (rxmin + i) mod 8;  
// sequence 0, 45, 90, 135, 180, - 135, - 90, - 45 
if (i<=4)  
  set rxangle = 45*i;  
if (i>4)  
  set rxangle = - 180 + 45*(i - 4);  

 
  if ( array[j] != 0 ) {  
    set num = sum((POWER_MAX -  array[j]) × rxangle)  
    set den = sum(POWER_MAX -  array[j])  
 
bearing = num/den + rxmin*45  
if (bearing < 0)  
  set bearing += 360  
 
reset array  
function update  bearing  table( self , SA, bearing)  

5.4.2 Position Estimation 

Position estimation in the code is a direct implementation of all the equations and the 
phantom elimination method outlined in section 4.2, and as such does not need to be 
covered further here. The issue of noise sensitivity due to errors in angle measurements was 
also touched upon this section, and highlighted as another possible means of weighting 
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estimates. In this implementation however only a simple check is applied to see if estimates 
are going to be unduly affected by noise sensitivity. 
 
// noise sensit ivity check  
ÉÆ ƽǷacb, Ƿcba or  Ƿbac fall within  ±20° of 0°  or 180° )  
  return without doing a position estimate  

 
If a discrimination angle falls within 20° of the angles 0° or 180°, this would make an almost 
collinear triangle with angles very sensitive to noise. In such a case a position estimate is not 
made, judged as being too unreliable. 

5.4.3 AHDWL 

For non anchor nodes position estimates are combined to produce a single current position 
estimate using the equations of the AHDWL weighting algorithm outlined in section 4.3. 
 
// AHDWL 
set d = ( n1 hops + n2 hops) + 2  
set beta = BETA_BASE/d  
set alpha = 1 -  beta  
 
if x est AND y est are valid  

if self x and self y are NAN  
  // update neighbour table 1st estimate  

    set self x = x est  
    set self y = y est  

else  
  // update  neighbour table 1st estimate  

    set self x = alpha ×  self  x + beta × x est  
    set self  y = alpha × self  y + beta × y est  

 
The first valid position estimate made is written directly to the neighbour table as the 
current estimated position. Thereafter position estimates are weighted based on the anchor 
hop counts of their reference nodes. 

5.5 Brief Walkthrough 

To assist understanding an example scenario and a walkthrough of the code response is 
presented. Consider a single neighbour triangle within an ad hoc network which initially 
consists of an anchor node (A) and two nodes of unknown position (B & C), here the 
response of node C is examined. 
 

 

Figure 5.12: Neighbour triangle ABC which forms part of an ad hoc network.  
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Node C first receives a hello sequence from node A. Node A is added to the neighbour table 
and the local bearing of node A is calculated and added to the bearing table. Node C then 
receives a hello sequence from node B and again adds this information to the neighbour and 
bearing tables. Upon reception of this hello sequence, node A sends a neighbour table 
update packet which contains its own position information as well as the bearing of node B 
taken at node A. ¢Ƙƛǎ Ǉƻǎƛǘƛƻƴ ŀƴŘ ōŜŀǊƛƴƎ ƛƴŦƻǊƳŀǘƛƻƴ ƛǎ ŀŘŘŜŘ ǘƻ ƴƻŘŜ /Ωǎ ǘŀōƭŜǎΣ ŀƴŘ ƴƻŘŜ 
A is identified as an anchor with a hop count of zero. Therefore node C finds its own hop 
count to be one. 
 

ID status x est y est hops C A B 

C U NAN NAN 1 - ʊCA ʊCB 
A A xA yA 0 NAN - ʊAB 
B U NAN NAN 0xFF NAN NAN - 

Table 5.1: NƻŘŜ /Ωǎ ǘŀōƭŜǎ upon receiving a neighbour table update packet from anchor node 
A. 

Node C then sends its own hello packet sequence having reached timeout for its idle task. 
This triggers an immediate neighbour table update packet response from node A which now 
contains the bearing of node C at node A. This new information is added to the bearing 
table. Later node B transmits a neighbour table update packet, with position and hop count 
information as well as the bearing information of nodes A, C and another node. This means 
that node B has been able to perform position estimation with that other node and node A 
as references. This information is added to the neighbour and bearing tables of node C, with 
the exception of the bearing of the node unknown to it, and node A is updated as being of 
known status. 
 
Given there are two nodes with position data and there is bearing data to and from each 
node in the triangle, node C can perform a position estimate. Given that this is the first 
position estimate node C makes, AHWDL is not applied, but the node now becomes of 
known status given a valid position estimate has been made. Node C then updates its own 
information in the neighbour table and sends a neighbour table update packet to nodes A 
and B. Future packets received will then be used to make new position estimates which will 
ōŜ ǿŜƛƎƘǘŜŘ ǳǎƛƴƎ !I5²[ ǘƻ ǳǇŘŀǘŜ ƴƻŘŜ /Ωǎ ǇƻǎƛǘƛƻƴΦ 
 

ID status x est y est hops C A B 

C K xC est yC est 1 - ʊCA ʊCB 
A A xA yA 0 ʊAC - ʊAB 
B K xB yB dB ʊBC ʊBA - 

Table 5.2Υ bƻŘŜ /Ωǎ ǊŜǎǳƭǘŀƴǘ ƴŜƛƎƘōƻǳǊ ŀƴŘ ōŜŀǊƛƴƎ ǘŀōƭŜǎΦ 
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6. Testing & Evaluation 

6.1 Bearing Testing 

The aim of the following tests was to check the range and standard deviation for calculated 
bearings by sending hello sequences at different step sizes of transmission power (duty 
cycle). 
 

 

Figure 6.1: Bearing test set up at a range of 1m with receiver node left and transmitter node 
right. 

The receiver node was set up at a range of 1m from the transmitter node, and placed at 
angles of approximately 0°, 30°, 45°, 60°, 90° and 135°. At each angle 50 hello sequences 
were sent for step sizes of 2%, 4%, 6%, 8% and 10% transmission duty. Each sequence 
started at the given step size and increased up to a maximum duty of 80%. The following 
table gives a summary of the results of the tests, with the actual observations given in 
Appendix A.1. 
 

 Angle 2% 4% 6% 8% 10% 

Mean 0° 1.30 1.75 3.00 3.79 1.67 

 30° 26.57 27.02 28.75 28.39 30.21 

 45° 45.87 45.70 44.34 47.30 44.78 

 60° 66.15 65.87 64.93 65.13 63.24 

 90° 90.86 90.71 91.24 90.99 89.99 

 135° 133.98 134.38 135.17 134.95 141.46 

Variance 0° 4.23 6.80 13.03 18.30 18.72 

 30° 5.52 6.07 5.71 11.13 4.96 

 45° 2.31 8.08 20.65 42.82 42.23 

 60° 0.76 3.65 9.22 9.24 10.91 

 90° 10.00 10.78 10.73 15.86 19.27 

 135° 7.62 12.09 17.49 28.91 51.70 

Std Dev 0° 2.06 2.61 3.61 4.28 4.33 

 30° 2.35 2.46 2.39 3.34 2.23 

 45° 1.52 2.84 4.54 6.54 6.50 

 60° 0.87 1.91 3.04 3.04 3.30 

 90° 3.16 3.28 3.28 3.98 4.39 

 135° 2.76 3.48 4.18 5.38 7.19 
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Table 6.1: Descriptive statistics of bearing test results at 1m range. 

As one would expect, for an increasing step size a typically increasing variance and standard 
deviation is obtained. The resolution of the calculated bearing values is also seen to reduce. 
These results are as expected; with a greater resolution of step sizes available more precise 
measurements of the minimum transmission power for receiver connectivity can be made 
thus giving a better centroid calculation. The majority of the tests found that the average 
bearing calculation was within 10° of the actual bearings as measured by hand. 
 
Standard deviation is the best measure of dispersion given here because (unlike variance) it 
is given in the same units as the calculations (degrees). It can be said with 95% confidence 
that a bearing calculation will lie within two standard deviations of the mean. In the above 
results (table 6.1) the largest standard deviation was 7.19, meaning there was a 95% 
probability of a bearing calculation lying within ±14.4° of the mean. For applications such as 
directional routing, given the Sens-r transmitters are placed at about 22.5° apart from each 
other, even this is reasonably good result; packets could be forwarded to neighbours with 
reasonable confidence by using the nearest three transmitters to the calculated bearing. 
 
There is a trade off here however between accuracy and time. The smaller the step size, the 
greater the bearing accuracy but so to the longer the hello sequence will take to transmit. At 
a step size of 2% a hello sequence will take 32.8s at 200ms per packet. Likewise 4% will take 
16.8s, 6% will take 11.2s, 8% will take 8.8s and 10% will take 7.2s. Consideration needs to be 
given to the maximum time a node can be allowed to transmit, and there is a clear need for 
media access control to ensure that nodes will not transmit whilst a neighbour is sending a 
hello sequence as a few missed packets can result in a very different bearing calculation. 
 
A method that could be used to achieve higher accuracy with lower step sizes would be to 
apply a moving average or median filter to bearing calculations made. For example consider 
the results from the 1m range 0° bearing test for a step size of 8%, then apply moving 
average and median filters with a window for up to five bearing calculations. 
 

Bearing 
Calc 

Moving 
Avg 

Median 
Filter 

Bearing 
Calc 

Moving 
Avg 

Median 
Filter 

Bearing 
Calc 

Moving 
Avg 

Median 
Filter 

0 0 0 8.18 4.772 3.75 8.18 4.022 3.75 

3.75 1.875 1.875 -3.75 4.022 3.75 3.75 4.772 3.75 

3.75 2.5 3.75 -3.75 2.522 3.75 8.18 4.772 3.75 

3.46 2.74 3.605 -3.75 1.022 -3.75 8.18 6.408 8.18 

3.75 2.942 3.75 8.18 1.022 -3.75 3.75 6.408 8.18 

0 2.942 3.75 8.18 1.022 -3.75 0 4.772 3.75 

0 2.192 3.46 8.18 3.408 8.18 8.18 5.658 8.18 

0 1.442 0 3.75 4.908 8.18 8.18 5.658 8.18 

0 0.75 0 8.18 7.294 8.18 3.75 4.772 3.75 

8.18 1.636 0 0 5.658 8.18 8.18 5.658 8.18 

8.18 3.272 0 3.75 4.772 3.75 8.18 7.294 8.18 

-3.75 2.522 0 -8.18 1.5 3.75 8.18 7.294 8.18 

3.75 3.272 3.75 8.18 2.386 3.75 8.18 7.294 8.18 

0 3.272 3.75 0 0.75 0 0 6.544 8.18 

3.75 2.386 3.75 8.18 2.386 3.75 3.75 5.658 8.18 

3.75 1.5 3.75 0 1.636 0 5 5.022 5 
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8.18 3.886 3.75 3.75 4.022 3.75 - - - 

Table 6.2: Moving average and median filters applied to 1m range, 0° bearing, 8% step size 
results. 

 
Bearing 

Calc 
Moving 

Avg 
Median 
Filter 

Mean 3.79 3.68 3.92 

Variance 18.30 4.03 11.42 

Std Dev 4.28 2.01 3.38 

Range 16.36 7.29 11.93 

Table 6.3: Descriptive statistics for the moving average & median filters applied. 

Both the moving average and median filters result in less variance in the bearing 
calculations. However applying such a filter would also reduce the responsiveness of the 
system to changes in node positions, as at multiple hello sequences would need to be 
received (depending on the size of the filter window) before reaching a new stable bearing. 
This would be particularly true of MANETs and a relative non issue for stationary networks. 
 
To apply a moving average filter to bearing data in the code as given would arrays (of the 
filters window size) for each local bearing in the bearing table to store past calculations. This 
would be relatively simple to implement as outlined below. 
 
// bearing calculation moving average filter (five data points)  
// bearing data[]  initialised to NAN  
 
for i: 0 to 4  

if((bea ring data[i] == NAN) OR (i == 4))  
  break  
set bearing data[i] = bearing data[i +1]  

 
set bearing data[i] = new bearing  
 
bearing = function avg(bearing data[0 to i])  
// for median filter  
// bearing = function median(bearing data[0 to i])  

6.2 Position Calculation 

Before implementing the code on the testbed, testing was done In order to ensure that 
position calculation and phantom elimination worked correctly. This was done by simulating 
packet reception at the mainboard, that is to say explicitly specifying packets and their 
contents to be decoded at the mainboard. In the code, this meant using the idle task to 
signal the communications task semaphore (rather than the USART ISR), and using a counter 
to determine what packet was to be decoded by the task. 
 
// id le task  test code  
1 min + random delay  
 
post semaphore(sem comms rx)  
 
// comms task  test code  
pend semaphore(sem comms rx)  
increment packet counter  
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switch(packet counter)  
  put simulated data into packet for given packet count  
 
respond to simulated packet  

 
The first set of tests for position calculation were for triangles where ||xA ï xB|| = ||yA ï yB||. 
This was because it was unclear how the original algorithm would cope with such scenarios 
and also because for such triangles it is easy to calculate expected results (right angled 
triangles with 45° discrimination angles). 
 

 

Figure 6.2: Simulation test for ||xA ï xB|| = ||yA ï yB||. 

With some modifications to the original scheme resulting in that outlined in section 4.2, a 
successful simulation test with neighbour nodes at equal distances in the positive and 
negative x and y directions was performed (as shown in figure 6.2). For each triangle 
combination the correct result of (0,0) was obtained. 
 
Successful simulations were also conducted for triangles where ||xA ï xB|| Í ||yA ï yB||. One 
of these tests is detailed below. 
 

 

Figure 6.3: Simulation test for ||xA ï xB|| < ||yA ï yB||. 

This triangle was simulated by using the follow packet sequence. 
 

Packet No. SA Packet Type Info 

1 1 H Pow: 8, Rx ID: 1 (45°) 
2 1 H Pow: 0xFF (end seq) 
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3 2 H Pow: 8, Rx ID: 3 (135°) 
4 2 H Pow: 0xFF (end seq) 
5 1 N x: 0, y: 0, hops: 0, ʊ1self: 225°, ʊ12: 180° 
6 2 N x: 0, y: -10, hops: 0, ʊ2self: 0°, ʊ21: 315° 

Table 6.4: Received packet sequence for simulation test. 

This resulted in the correct position estimate of (-5,-5) being made and output to the PC as 
shown below in figure 6.4. 
 

 

Figure 6.4: Results of the simulation test as seen on PC terminal. 

By doing these tests the code operation, position calculation and phantom elimination 
methods were demonstrated to work given successful packet reception at the receiver. 
Testing then moved from simulated reception at single Sens-r node to a triangle of three 
nodes. 
 

 

Figure 6.5: Experimental set up for position estimation with the lower left node unknown, 
the other two nodes as anchors. 

This set up exposed a number of problems with the code as it stood. Originally after 
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reception of a hello sequence anchor or known nodes would then immediately transmit a 
neighbour table update packet, however given the implementation of sending hello packets 
of power 0xFF on each LED to end the sequence a delay had to be introduced. This delay 
ǿŀǎ ƻŦ ŀ ǊŀƴŘƻƳ ǇŜǊƛƻŘ ǘƻ ŜƴǎǳǊŜ ƳǳƭǘƛǇƭŜ ƴƻŘŜǎ ǿƻǳƭŘƴΩǘ ǘǊŀƴǎƳƛǘ ǘƘŜƛǊ ƴŜƛƎƘōƻǳǊ table 
update packets simultaneously. 
 
Another problem was in preventing the simultaneous transmission or partial transmission of 
hello sequences by nodes. Simultaneous transmissions render the packets sent useless, as 
they are corrupted and therefore discarded for failing CRC checks. An attempted solution to 
the problem was to implement a wait and random resend routine, where if a message is 
being received then transmission is delayed and an attempt to resend made after a random 
period of time. 
 
A further difficulty involved neighbour table update packets being missed at their intended 
recipient nodes. This may have been caused by inaccurate bearing calculations affecting 
which LED the packet was to be forwarded on or simultaneous transmissions as mentioned 
previously. 
 
It became quite clear, that without implementing proper media access control and 
directional routing, position estimation would be practically unachievable. Estimates were 
able to be made but the length of time it took to successfully receive the necessary packets 
(requiring multiple resends before a packet was received) made the process so slow as to be 
made redundant. Only by strictly controlling when each node was to transmit and on which 
transmitter LEDs was successful position estimation was achieved. Given the problems in 
achieving position estimation for a single neighbour triangle, position testing was halted at 
that point and unfortunately there wasƴΩǘ sufficient time to attempt to implement a MAC 
scheme. 

6.3 System Evaluation 

By using the Sens-r testbed and code it was found that reasonable accuracy can be achieved 
by using the bearing calculation method outlined in this paper. Higher accuracy is achieved 
for sending hello sequences with smaller step sizes in transmission power, however the 
smaller the step size the longer it takes to transmit a hello sequence. Another method to 
improve accuracy is achieved by applying a moving average or median filter to bearing 
ŎŀƭŎǳƭŀǘƛƻƴǎΣ ŀƭǘƘƻǳƎƘ ǘƘƛǎ ǿƻǳƭŘ ƭƻǿŜǊ ǘƘŜ ǎȅǎǘŜƳΩǎ ǊŜǎǇƻƴǎŜ ǘƛƳŜ to topology changes. 
 
Position calculation and phantom elimination was found to work correctly through 
simulated reception of packets at the receiver node but problems with simultaneous 
transmission and directional routing made it difficult to achieve on the actual testbed. 
Unfortunately due to these problems, significant testing beyond making single position 
estimates was not achieved. This means that a real life assessment of many aspects of 
system performance were unable to be made. This includes for example, the effectiveness 
of the AHDWL as compared to just EWMA, effectiveness of different methods of weighting 
by hop count, examining system robustness in dealing with node failures and efficiency in 
obtaining new estimates given a changed node structure. 
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7. Conclusions & Recommendations 

7.1 Conclusion 

The primary aim of this project was to implement an angle based localisation scheme for 
infrared ad hoc networks which reduces error accumulation that other iterative localisation 
ƳŜǘƘƻŘǎ ǎǳŦŦŜǊ ŦǊƻƳ ŀƴŘ ŘƻŜǎƴΩǘ ǊŜƭȅ ǳǇƻƴ ŜȄǇƭƛŎƛǘ signal strength indicators. The two main 
outcomes of the project were one, a testbed of five non mobile Sens-r nodes to provide a 
test platform for the scheme and two, the successful implementation of the scheme in code. 
 
Testing of the code found that using the method outlined in this paper, bearings could be 
calculated to reasonable accuracy without the need for RSSI, although it takes a significant 
amount of time to make a measurement due to the length of the transmitted sequences. 
Longer sequences of greater transmission power resolution were found to produce more 
accurate results. Applying a moving average or median filter was also shown to improve 
accuracy. 
 
Position estimation was found to work correctly by simulating reception of packets at the 
receiver node. This demonstrated that the localisation scheme works given successful 
packet reception. However there were significant problems with regard to packet reception 
when trying to perform position estimation on the actual testbed. This is mainly attributed 
to packet collisions due the lack of a media access control scheme. 
 
The work done in this project contributes to research in the areas of localisation and optical 
ad hoc networks. It is hoped that this project provides a platform upon which future work in 
these fields can be based. 

7.2 Recommendations for Future Work 

Clearly the immediate focus of future work should be implementing a directional media 
access control scheme to prevent simultaneous transmissions from neighbours interfering 
with each other. Without media access control simultaneous transmissions can corrupt 
packets which in terms of the localisation scheme, means a receiver node may miss 
neighbour table update packets or miss a number of packets in a hello sequence, resulting 
in inaccurate bearing estimations.  
 
A possible media access control scheme would be to implement a network allocation vector 
as a means to do virtual carrier sensing. For example, when a node wants to transmit it 
could first send a packet which specifies the time it will take to send its following packets,  
or in the MAC header there could be an NAV duration field which tells other nodes not to 
transmit for that specified period. Neighbour nodes then take this value and store it in a 
NAV counter which decrements to zero over time, at which point they are free to try and 
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gain the right to transmit. Random wait times might also need to be implemented to 
prevent collisions between initial packets. Implementing proper MAC would also likely help 
ǎƻƭǾŜ ǘƘŜ ǇǊƻōƭŜƳ ǿƘŜǊŜ ŀ ƴƻŘŜΩǎ ƻǿƴ ǘǊŀƴǎƳƛssions interfere with packets on its receivers 
by preventing transmission and reception from occurring simultaneously in the same 
direction. 
 
Another area of work to be done is in directional routing, in particular forwarding of packets 
to specific nodes utilising the directionality of the transmitter LEDs. A crude implementation 
was given in the code for transmitting of neighbour table update packets, by sending on the 
closest transmitter, however it is likely a better method could be found. 
 
Future work would undoubtedly involve moving to a larger testbed of say 20 nodes and 
upwards. For such a network it would be best to utilise dynamic memory allocation rather 
than pre-allocating it for the neighbour and bearing tables. Fortunately the AVR C library 
provides functions for dynamic memory allocation to on board and external RAM. 
Alternatively it may be beneficial to use PC to simulate the role of the mainboard, removing 
the concern for memory. By using a simpler node design with a single communications 
board using USB, multiple nodes could be controlled through a single USB hub. This would 
provide data on the state of many nodes in the network as well as greatly reducing the 
debug process time. 
 
Also, with regard to the tables, it would be advisable to impleƳŜƴǘ ŀ ǎƻǊǘ ƻŦ ΨǘƛƳŜ ǘƻ ƭƛǾŜΩ 
scheme for node data in order to account for node failures. In the current scheme, if a node 
Ŧŀƛƭǎ ƛǘǎ Řŀǘŀ ǊŜƳŀƛƴǎ ƛƴ ƛǘǎ ƴŜƛƎƘōƻǳǊǎΩ ǘŀōƭŜǎΤ ƛŦ ƛǘ ǿŜǊŜ ŀƴ ŀƴŎƘƻǊ ƴƻŘŜ ǘƘŜƴ ƛǘǎ ƴŜƛƎƘōƻǳǊǎ 
would think they are one hop nodes, affecting the weightings applied to position data across 
that area of the network. One could apply TTL to data in the table, which on expiring would 
be prohibited from use in anchor hop and position estimate calculation until a new packet 
from that node is received. 
 
Another essential and quite simple change would be to alter the code such that two or three 
hello sequences could be received at a time by using multiple receive buffers. This would be 
useful in the case where a node can see two neighbours directly opposite each other, but 
where they cannot see each other and so both transmit hello sequences. 
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Appendix A: Test Results 

A.1 Bearing Test Results 

Range 1m, Bearing 0° 

Step Size: 2% 4% 6% 8% 10% 

0.00 3.60 -2.81 0.00 5.63 

-1.70 3.60 12.86 3.75 -5.62 

0.83 0.00 0.00 3.75 0.00 

3.53 0.00 6.00 3.46 0.00 

0.00 1.73 -2.81 3.75 -5.62 

0.00 0.00 2.81 0.00 0.00 

1.73 8.18 7.16 0.00 5.63 

1.73 1.73 6.00 0.00 5.63 

3.60 0.00 7.16 0.00 5.63 

1.70 0.00 0.00 8.18 -5.62 

0.87 1.73 6.00 8.18 5.63 

0.00 1.73 2.81 -3.75 5.63 

4.50 0.00 6.00 3.75 5.63 

0.85 3.60 7.16 0.00 5.63 

1.76 7.83 7.16 3.75 5.63 

0.00 1.73 2.81 3.75 5.63 

3.53 1.73 -2.81 8.18 0.00 

2.60 1.73 2.81 8.18 0.00 

0.00 0.00 -2.81 -3.75 5.63 

2.60 0.00 2.81 -3.75 -5.62 

0.00 0.00 0.00 -3.75 5.63 

-0.85 3.60 0.00 8.18 0.00 

0.85 1.73 -2.81 8.18 -5.62 

0.00 7.83 7.16 8.18 0.00 

2.70 3.60 -2.81 3.75 0.00 

1.70 7.83 6.00 8.18 -5.62 

-2.60 0.00 6.00 0.00 0.00 

3.60 1.73 6.00 3.75 5.63 

-0.83 7.83 2.81 -8.18 0.00 

0.00 0.00 7.16 8.18 0.00 

0.85 3.60 2.81 0.00 5.63 

-1.70 3.75 6.00 8.18 0.00 

3.53 1.73 2.81 0.00 5.63 



 52 

0.83 3.60 6.00 3.75 5.63 

5.63 3.60 2.81 8.18 5.63 

0.83 0.00 0.00 3.75 5.63 

-0.83 0.00 0.00 8.18 5.63 

0.87 -1.73 0.00 8.18 5.63 

0.00 1.73 2.81 3.75 5.63 

1.70 -1.73 0.00 0.00 5.63 

0.83 0.00 7.16 8.18 -5.62 

0.00 1.73 0.00 8.18 0.00 

1.73 -1.73 2.81 3.75 0.00 

-0.83 1.73 2.81 8.18 5.63 

0.00 -1.73 0.00 8.18 0.00 

2.65 -1.73 2.81 8.18 0.00 

6.56 1.73 0.00 8.18 0.00 

0.85 0.00 0.00 0.00 5.63 

0.83 0.00 7.16 3.75 -5.62 

7.83 0.00 6.28 5.00 -6.59 

Table A.1: Bearing test results for 1m range, 0° bearing. 

 
Range 1m, Bearing 30° 

Step Size: 2% 4% 6% 8% 10% 

29.48 24.43 28.22 27.50 28.64 

24.13 27.32 25.62 30.00 28.64 

23.79 24.43 31.88 23.82 31.50 

26.09 30.00 24.49 28.93 28.64 

28.93 23.82 31.42 23.82 31.50 

27.30 31.15 28.42 33.75 31.50 

28.71 27.00 30.60 31.15 28.64 

28.42 25.91 32.14 23.82 28.64 

27.75 26.13 26.59 31.15 26.25 

24.13 31.94 25.93 27.69 31.50 

26.62 23.82 28.42 28.93 31.50 

24.13 25.71 30.60 27.00 35.00 

27.93 24.43 25.71 31.15 31.50 

25.91 27.00 28.87 23.82 31.50 

28.71 28.93 30.60 31.15 31.50 

23.82 23.82 23.54 28.93 31.50 

24.43 27.00 27.32 31.15 26.25 

28.42 30.00 27.32 28.93 31.50 

23.79 23.82 30.60 23.82 31.50 

25.71 24.55 27.32 27.00 30.00 

24.13 24.43 24.68 31.15 31.50 

24.13 25.71 30.60 28.93 31.50 

27.75 27.00 26.32 30.00 28.64 

24.43 27.00 23.54 30.00 28.64 

27.25 27.93 32.55 21.00 35.00 
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28.03 30.00 29.73 31.15 28.64 

30.00 29.03 31.42 30.00 28.64 

25.31 28.50 27.32 30.79 31.50 

23.16 28.93 28.87 23.82 26.25 

30.26 27.93 23.54 28.93 28.64 

24.49 25.91 31.42 28.93 27.00 

28.22 25.71 30.60 31.15 28.64 

24.49 28.50 27.32 23.82 28.64 

32.86 30.00 26.85 28.93 31.50 

29.48 30.00 28.22 27.69 35.00 

24.43 28.50 28.87 31.15 28.64 

26.13 28.33 30.60 33.75 31.50 

23.82 23.82 29.73 23.82 31.50 

27.54 30.00 28.87 33.00 35.00 

26.56 27.50 31.42 31.15 28.64 

31.03 23.82 29.73 28.93 28.64 

28.98 25.71 28.87 31.15 28.64 

26.87 24.43 31.42 33.75 28.64 

24.43 23.82 28.87 28.93 28.64 

23.79 23.18 29.73 22.50 28.64 

24.43 28.50 29.73 22.50 31.50 

24.08 25.31 29.73 31.15 28.64 

27.42 32.88 31.42 25.31 33.75 

27.75 28.93 29.73 23.82 31.50 

29.19 28.42 30.27 28.93 29.72 

Table A.2: Bearing test results for 1m range, 30° bearing. 

 
Range 1m, Bearing 45° 

Step Size: 2% 4% 6% 8% 10% 

47.25 45.88 47.81 49.50 59.06 

46.80 41.40 49.66 47.14 47.37 

43.69 42.24 49.50 42.95 39.71 

43.14 57.69 53.04 46.88 42.19 

46.34 43.04 40.78 42.95 37.06 

45.46 46.80 42.27 42.86 47.37 

44.56 44.12 43.55 47.14 34.41 

46.35 46.80 57.60 47.05 42.19 

44.13 44.04 40.91 48.91 40.00 

45.43 42.00 42.00 46.88 65.77 

47.32 45.92 46.45 43.13 47.50 

48.75 44.04 46.41 41.25 37.06 

43.16 50.00 46.36 41.25 54.64 

48.83 45.92 46.32 41.09 39.71 

44.56 48.00 39.19 43.27 47.50 

44.57 45.92 41.03 46.88 47.37 

46.38 44.12 46.41 55.00 37.06 
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46.78 44.10 43.55 39.13 42.19 

46.32 46.80 43.64 46.88 42.50 

45.89 47.93 43.55 43.13 39.71 

47.25 46.88 49.50 51.14 54.64 

44.57 45.92 46.41 40.71 42.50 

45.89 45.92 43.59 56.25 56.25 

45.90 45.92 34.14 43.20 42.50 

47.32 44.12 43.68 43.20 51.92 

45.90 47.76 42.00 66.00 47.25 

44.13 46.88 46.41 54.47 42.50 

45.44 39.13 57.12 47.14 39.71 

44.10 46.88 39.00 66.00 42.75 

48.75 41.25 39.00 43.13 40.26 

46.78 46.00 41.90 50.87 40.00 

45.90 46.80 41.79 66.18 39.71 

46.88 46.80 42.00 55.00 57.00 

46.34 47.76 38.57 41.40 47.37 

46.78 45.92 40.91 47.05 42.75 

46.82 43.04 40.34 43.13 39.71 

46.36 47.87 46.32 43.04 39.71 

43.13 45.92 46.50 40.71 54.64 

45.46 49.00 40.50 40.50 39.71 

47.32 47.87 39.19 43.20 47.37 

46.34 45.92 45.00 56.25 42.19 

45.90 45.92 46.41 48.91 42.50 

46.34 46.80 49.50 47.05 47.25 

45.88 42.24 46.50 45.00 51.92 

45.44 47.76 39.00 46.96 39.71 

46.78 46.91 46.41 47.05 47.50 

45.91 46.80 40.91 43.13 42.19 

46.82 43.09 40.91 49.29 42.50 

46.32 43.20 46.41 41.25 39.71 

40.91 42.00 46.91 54.51 45.00 

Table A.3: Bearing test results for 1m range, 45° bearing. 

 
Range 1m, Bearing 60° 

Step Size: 2% 4% 6% 8% 10% 

65.82 67.50 67.50 57.27 63.75 

66.52 69.00 63.68 65.77 63.75 

66.84 66.82 64.07 61.36 63.75 

66.18 67.50 65.32 69.00 63.00 

66.49 64.50 58.30 60.00 63.75 

66.46 66.18 66.46 67.50 65.77 

66.09 66.09 66.46 69.00 65.77 

64.50 64.50 64.07 67.50 65.77 

64.18 66.82 66.46 64.29 65.77 
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65.77 66.82 61.13 66.00 65.77 

66.49 66.82 64.07 58.50 56.25 

66.18 65.32 65.09 60.00 61.36 

66.84 66.82 55.23 61.36 65.77 

66.49 66.09 63.68 62.31 63.00 

66.84 66.18 66.46 69.00 56.25 

66.84 60.58 66.46 66.18 65.77 

64.18 66.82 66.46 64.29 63.75 

66.46 66.82 66.46 67.50 61.36 

65.71 63.62 68.54 62.31 63.75 

66.36 65.32 62.68 64.29 55.00 

66.46 59.40 66.46 60.00 65.77 

66.46 66.09 66.46 65.77 63.75 

66.14 66.82 66.36 67.50 60.00 

64.07 67.50 67.50 64.29 67.50 

66.49 66.82 64.07 64.29 63.75 

66.49 64.29 65.32 66.18 65.77 

66.84 66.82 66.46 67.50 65.77 

66.84 66.09 66.46 67.50 58.50 

67.17 66.82 64.07 67.50 63.75 

66.52 66.82 66.46 69.00 58.50 

66.84 66.82 52.68 64.29 55.00 

66.49 66.82 64.07 62.31 65.77 

66.49 64.50 67.50 60.00 65.77 

65.00 64.50 66.46 65.77 63.75 

66.49 63.62 66.46 69.00 67.50 

66.14 66.82 66.46 69.00 56.25 

65.77 66.09 66.46 66.18 65.77 

63.75 66.09 66.46 63.00 63.00 

66.14 66.82 59.40 64.29 63.00 

65.32 66.09 63.68 66.00 63.75 

67.87 66.82 65.09 65.77 63.75 

65.71 59.40 65.32 62.31 58.50 

66.82 65.45 66.46 67.50 65.45 

66.49 65.32 66.46 64.29 65.77 

66.14 67.50 64.07 67.50 63.75 

67.16 66.82 64.07 67.50 65.77 

66.49 66.09 66.46 67.50 65.45 

66.84 66.82 67.50 67.50 65.77 

66.09 65.17 68.64 67.50 60.28 

64.50 68.57 64.50 66.49 65.77 

Table A.4: Bearing test results for 1m range, 60° bearing. 

 
Range 1m, Bearing 90° 

Step Size: 2% 4% 6% 8% 10% 

90.83 90.00 90.00 90.00 90.00 



 56 

90.00 91.80 87.00 90.00 95.63 

91.88 91.80 92.81 90.00 90.00 

90.00 100.59 96.43 93.75 90.00 

91.10 91.80 90.00 93.75 95.63 

90.00 91.73 93.00 93.75 90.00 

90.00 90.00 91.67 90.00 84.38 

90.00 91.88 90.00 98.18 90.00 

91.41 90.00 84.00 90.00 90.00 

92.76 93.46 105.00 93.75 84.38 

90.00 88.20 90.00 93.75 95.63 

91.80 88.27 93.00 93.75 90.00 

90.00 79.41 96.43 93.75 90.00 

90.00 91.80 90.00 90.00 90.00 

90.00 90.00 90.00 86.25 95.63 

90.00 90.00 90.00 90.00 90.00 

91.71 90.00 90.00 90.00 90.00 

90.00 88.27 87.00 79.41 84.38 

90.00 90.00 87.19 90.00 90.00 

89.17 88.20 92.81 90.00 84.38 

89.17 91.80 87.00 93.75 84.38 

90.00 90.00 90.00 98.18 90.00 

90.00 90.00 93.00 90.00 95.63 

90.63 90.00 92.81 98.18 90.00 

89.17 90.00 93.00 90.00 95.63 

90.83 88.20 90.00 93.75 84.38 

89.15 90.00 90.00 81.82 95.63 

80.36 90.00 92.81 90.00 90.00 

91.55 90.00 87.19 81.82 84.38 

90.00 90.00 90.00 90.00 90.00 

90.00 91.80 90.00 93.75 90.00 

90.83 88.20 90.00 90.00 95.63 

90.00 88.20 96.00 90.00 90.00 

90.00 88.20 90.00 90.00 90.00 

90.00 91.80 96.43 86.25 90.00 

91.10 91.73 90.00 90.00 90.00 

88.24 90.00 90.00 90.00 90.00 

91.70 90.00 90.00 86.25 90.00 

90.85 90.00 92.81 93.75 90.00 

90.00 95.63 90.00 90.00 84.38 

101.09 90.00 90.00 90.00 95.63 

90.83 100.59 93.00 93.75 95.63 

90.00 100.29 96.00 90.00 73.64 

91.70 90.00 92.81 86.25 90.00 

101.74 90.00 90.00 93.75 95.63 

89.15 90.00 90.00 90.00 90.00 

90.00 91.80 90.00 100.59 95.63 
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90.00 88.20 92.81 93.75 90.00 

93.13 91.80 90.00 93.75 90.00 

101.10 90.00 90.00 90.00 83.41 

Table A.5: Bearing test results for 1m range, 90° bearing. 

 
Range 1m, Bearing 135° 

Step Size: 2% 4% 6% 8% 10% 

135.54 135.00 135.00 128.86 138.21 

131.04 133.16 138.00 128.86 140.29 

135.00 133.85 133.59 133.13 137.81 

135.00 139.09 132.27 137.50 140.29 

131.09 129.77 136.73 135.00 140.29 

131.21 137.93 136.73 137.05 151.36 

132.26 134.10 130.50 132.50 143.44 

130.11 130.91 139.50 131.09 140.29 

136.07 130.00 138.60 133.13 140.29 

131.82 130.91 130.50 139.29 140.29 

136.11 130.11 125.69 135.00 140.29 

134.02 136.96 136.73 132.50 140.29 

129.62 131.93 136.73 128.86 137.50 

138.18 135.00 136.73 132.95 153.75 

133.31 130.00 141.21 132.95 155.77 

139.24 135.94 138.00 141.14 135.00 

130.60 134.08 135.00 135.00 140.29 

137.07 139.00 129.19 135.00 155.77 

129.07 139.09 132.27 131.09 135.00 

132.80 129.00 133.27 137.25 129.71 

136.06 134.08 135.00 131.09 155.77 

132.38 130.31 139.50 151.07 135.00 

131.90 139.09 141.21 130.71 143.44 

134.55 132.30 128.79 133.13 140.29 

130.16 134.10 129.19 123.75 140.29 

133.94 141.43 132.27 139.29 148.50 

135.00 139.19 131.40 142.50 151.36 

130.74 139.09 138.10 139.29 140.29 

132.83 131.86 139.50 137.05 135.00 

135.55 133.13 133.59 128.86 140.29 

135.95 133.24 133.55 135.00 140.29 

137.02 132.07 132.27 133.13 140.29 

136.59 133.90 130.50 142.50 135.00 

135.48 132.00 135.00 131.09 140.29 

134.42 138.00 135.00 135.00 155.77 

138.50 139.19 139.50 128.86 129.71 

133.94 134.08 138.10 135.00 155.77 

136.08 130.31 141.21 141.75 155.77 

132.98 136.10 130.50 137.81 140.29 



 58 

138.58 134.08 127.50 153.00 137.50 

131.13 131.09 132.27 128.86 140.29 

129.50 139.09 139.50 133.13 135.00 

133.14 135.00 130.50 137.50 135.00 

138.58 129.77 141.21 135.00 129.71 

135.54 135.00 143.04 133.13 143.44 

132.47 135.00 136.73 135.00 143.44 

132.47 133.98 138.60 128.86 137.81 

139.00 136.96 132.27 132.50 140.29 

134.44 128.15 135.00 135.00 132.19 

131.09 141.43 141.35 140.63 139.15 

Table A.6: Bearing test results for 1m range, 135° bearing. 
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Appendix B: Mathematical Work 

B.1 Equation 4.16 Proof 

Proof of equation 4.16: 
2 2 2

2

C B C A A B
P B

A B

- - - + -
- =

-
 

 
2 2 2

2

C B C A A B
RHS

A B

- - - + -
=

-
 

 
Substitute equations 4.13 & 4.14: 

2 2 2

2

P B P A A B
RHS

A B

- - - + -
=

-
 

 
Substitute equation 4.15: 

( )
22 2

2

P B P A P A P B
RHS

A B

- - - + - + -
=

-
 

2
2 2

2

P B P A P B
RHS

A B

- + - -
=

-
 

( )P B P A P B
RHS

A B

- - + -
=

-
 

 
Substitute equation 4.15: 

P B A B
RHS

A B

- -
=

-
 

RHS P B= -  

LHS=  
 

Q.E.D 
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Appendix C: Testbed Supplement 

The following appendix provides the circuit diagrams and parts required to produce the non 
mobile Sens-r nodes used in this project. Component lists for additional electronics used are 
also supplied. 

C.1 Sens-r Components List 

Qty/ 
Node 

Value Supplier Part No. Description 

Mainboard 
1  Monash Uni  Mainboard PCB 
1  Futurlec ATMEGA128-16AC ATmega 128 128kB MCU (64 TQFP) 
1  Futurlec L293D L293D Motor Drive IC 
1 16MHz Altronics V2289 (1x10 pack) 16 MHz HC49SM Surface Mount Crystal 
8  Altronics Y1041 (1x10 pack) LED 1206 Red 
8 430 Altronics R1049 (1x10 pack) Surface Mount Resistor 
1 10k Altronics R8188 (1x10 pack) Surface Mount Resistor 
3 2k Altronics R8137 (1x10 pack) Surface Mount Resistor 
1 4k7   Through Hole Resistor 
1  Jaycar SM1020 4 Way Dil Switch 
1  Altronics S1120 PCB Mount SPST Momentary Pushbutton 

Switch 
2 22pF Altronics R9836 (1x10 pack) Surface Mount Capacitor 
5 0.1uF Altronics R8835 (1x10 pack) Surface Mount Capacitor 
1 10uF Altronics R4768 Polarised Capacitor 
1  Altronics Y0908 MC78M05CD2T (D2PAK) 3-Terminal 0.5A 

Positive Voltage Regulator 
1  Altronics P5513 3 Way 90 degree PCB Mount Pin Header 
2  Altronics P5514 4 Way 90 degree PCB Mount Pin Header 
1  Altronics P5515 5 Way 90 degree PCB Mount Pin Header 
1  Altronics P5420 40 Way 90 degree Dual Row Pin (5 way 

required) 
1  Altronics P5410 40 Way Dual Row Pin (11 way required) 
1    Pin Jumper 
1  Altronics P5430 40 Way PCB Pin (9 pins required) 
Communications Board 
1  Monash Uni  Communications Board PCB 
1  Futurlec ATMEGA168V-10PI ATmega168 (PDIP) + Chip Socket 
1 10MHz Altronics V1259 10 MHz Low Profile HC49 Crystal 
3 0.1uF Altronics R2930A Capacitor 
2 22pF Altronics R2814 Capacitor 
4  Altronics BC547 NPN Transistor 
5  Altronics BC557 PNP Transistor 
11 2k2   Through Hole Resistor 
4 560   Through Hole Resistor 
1 3k3   Through Hole Resistor 
1 4k7   Through Hole Resistor 
1  Altronics S1120 PCB Mount SPST Momentary Pushbutton 

Switch 
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8  Altronics Z1611 BRM-1030 IR Rx Module 
16  Jaycar ZD1945 5mm IR LED 
1  RS LM317MDT/NOPB 500 mA Adjustable Output Positive Voltage 

Regulator 
1  Altronics P5410 40 Way Dual Row Pin (5 way required) 
1  Altronics P5400 40 Pin PCB Pin Socket (need 10 pins) 
Other 
1  Monash Uni  5 Pin PCB Cable with Female Plug 
1  Monash Uni  9V Power Supply or 9V Battery Connector 

& 3 Pin Female PCB Plug 
3  Altronics H1320 (1x10 pack) 5 x 12mm Round Nylon Spacer 
3  Altronics H3150A (1x10 pack) M3 x 25mm Pan Pozi Nickel Bolt 
3  Altronics H1345  (1x8 pack) 8mm Nylon Tapped Spacer 

*Note: Motor, wheels, encoders not included as non mobile. 

Table C.1: Non mobile Sens-r node complete components list. 

C.2 Sens-r Circuit Diagrams 

The following circuit diagrams are updated versions of those available at TWiki.WSensornets 
[2]. 
 

 

Figure C.1: Mainboard circuit diagram: Microcontroller. 

 
















































